-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_utils.py
447 lines (373 loc) · 17.4 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import torch as ch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import os
import numpy as np
from utils import save_model
from utils import get_mask
import logging
logger = logging.getLogger(__name__)
def downstream_epoch(loader, criterion, net, args,
optimizer=None, finetune=False,
finetune_conv=False, conditional_mask=False,
env=None):
# No Optimizer -> Test mode
is_train = (optimizer is not None)
if is_train:
if finetune: # downstream training
if args.arch.startswith('resnet'):
net.fc.train()
net.model.eval()
if finetune_conv: # downstream training with conv layers
net.model.layer4.train()
elif args.arch.startswith('mobilenet'):
net.classifier.train()
net.model.eval()
if finetune_conv:
raise NotImplementedError()
else:
raise ValueError(f"Unknown arch: {args.arch}")
else:
net.train()
else:
net.eval()
total_loss = 0
correct, total = 0, 0
iterator = tqdm(enumerate(loader), total=len(loader))
with ch.set_grad_enabled(is_train):
for batch_idx, (inputs, targets) in iterator:
if is_train:
optimizer.zero_grad()
# Conditional mask, if requested
if conditional_mask:
targets, cond_mask = targets
# Set mask only for non-prop people
cond_mask = ch.logical_not(cond_mask)
else:
cond_mask = None
inputs, targets = inputs.to(args.device), targets.to(args.device)
outputs, _ = net(inputs, conditional_mask=cond_mask)
loss = criterion(outputs, targets)
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
num_samples = targets.size(0)
total += num_samples
if is_train:
loss.backward()
optimizer.step()
total_loss += loss.item() * num_samples
prefix = "Train" if is_train else "Test"
iterator.set_description("[%s] Loss: %.3f | Acc: %.3f%% (%d/%d)"
% (prefix, total_loss / total, 100. * correct / total, correct, total))
# Save checkpoint
acc = 100. * correct / total
loss = total_loss / total
return acc, loss
def epoch(loader, criterion, net, args, ds, triplet_loss,
regularizer=None, optimizer=None, finetune=False,
finetune_conv=False, conditional_mask=False,
fragmented_reg=False, target_loss=False, env=None):
# No Optimizer -> Test mode
is_train = (optimizer is not None)
is_mixup = args.mixup
if is_train:
if finetune: # downstream training
net.fc.train()
net.model.eval()
if finetune_conv: # downstream training with conv layers
net.model.layer4.train()
else:
net.train()
else:
net.eval()
total_loss, total_reg, total_triplet = 0, 0, 0
correct, total = 0, 0
total_loss_target, total_target, correct_target = 0, 0, 0
iterator = tqdm(enumerate(loader), total=len(loader))
if is_mixup and is_train:
target_property_loader = env['target_loader']
target_property_iter = iter(target_property_loader)
with ch.set_grad_enabled(is_train):
for batch_idx, (inputs, targets) in iterator:
if is_train:
optimizer.zero_grad()
# Conditional mask, if requested
if conditional_mask:
targets, cond_mask = targets
# Set mask only for non-prop people
cond_mask = ch.logical_not(cond_mask)
else:
cond_mask = None
if fragmented_reg:
targets, rel_mask = targets
if args.mixup:
random_control = np.random.rand()
# TODO use an elegant way to control the frequency of mixup
if random_control < 0.7:
is_mixup = False # for this iteration, disable mixup
if is_mixup and is_train:
# Uses mixup to increase the number of samples of the target property
try:
inputs_t, targets_t = next(target_property_iter)
except StopIteration:
target_property_iter = iter(target_property_loader)
inputs_t, targets_t = next(target_property_iter)
alpha = np.random.uniform(0, 1)
inputs = alpha * inputs + (1 - alpha) * inputs_t
inputs, targets, targets_t = inputs.to(args.device), targets.to(
args.device), targets_t.to(args.device)
outputs, x_emb = net(inputs, conditional_mask=cond_mask)
loss = alpha * criterion(outputs, targets) + \
(1 - alpha) * criterion(outputs, targets_t)
_, predicted = outputs.max(1)
if alpha > 0.5:
correct += predicted.eq(targets).sum().item()
else:
correct += predicted.eq(targets_t).sum().item()
else:
# Normal training
inputs, targets = inputs.to(
args.device), targets.to(args.device)
outputs, x_emb = net(inputs, conditional_mask=cond_mask)
loss = criterion(outputs, targets)
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
num_samples = targets.size(0)
total += num_samples
tid = ds.target_ids
if target_loss:
# Use an additional loss term to make sure the model work well on target samples
target_mask = get_mask(targets, tid)
outputs_target = outputs[target_mask]
targets_target = targets[target_mask]
if is_mixup and is_train:
targets_target_t = targets_t[target_mask]
loss_target = alpha * criterion(outputs_target, targets_target) + \
(1 - alpha) * criterion(outputs_target, targets_target_t)
else:
loss_target = criterion(outputs_target, targets_target)
num_samples_target = targets_target.size(0)
loss = loss + args.target_const * \
(loss_target if num_samples_target > 0 else 0)
if num_samples_target > 0:
total_loss_target += loss_target.item() * num_samples_target
_, predicted_target = outputs_target.max(1)
if is_mixup and is_train and alpha <= 0.5:
correct_target += predicted_target.eq(
targets_target_t).sum().item()
else:
correct_target += predicted_target.eq(
targets_target).sum().item()
total_target += num_samples_target
# if args.use_triplet:
# # Also use triplet loss, if requessted
# loss_triplet = triplet_loss(x_emb, targets)
# loss += args.triplet_const + loss_triplet
# total_triplet += args.triplet_const * loss_triplet.item() * num_samples
if regularizer is not None:
# Loss term for activation embedding
if fragmented_reg:
args.misc = rel_mask
emb_l2_reg, loss_reg = regularizer(
tid, x_emb, targets, args)
if fragmented_reg:
# Set to None, just in case
args.misc = None
loss = loss + args.reg_const * loss_reg
if loss_reg > 0:
total_reg += args.reg_const * loss_reg.item() * num_samples
if is_train:
loss.backward()
optimizer.step()
total_loss += loss.item() * num_samples
prefix = "Train" if is_train else "Test"
triplet_string, reg_string, target_loss_string = "", "", ""
if regularizer is not None:
reg_string = " Regularizer: %.3f |" % (total_reg / total)
if args.use_triplet:
triplet_string = " Triplet-Loss: %.3f |" % (
total_triplet / total)
if target_loss:
target_loss_string = " Target-Loss: %.3f TAcc: %.3f%%|" % (
total_loss_target / total_target if total_target > 0 else 0,
100 * correct_target / total_target if total_target > 0 else 0)
iterator.set_description("[%s] Loss: %.3f |%s%s%s Acc: %.3f%% (%d/%d)"
% (prefix, total_loss / total, target_loss_string, reg_string,
triplet_string, 100. * correct / total, correct, total))
# Save checkpoint
acc = 100. * correct / total
loss = total_loss / total
return acc, loss
def train_model(net, ds, args, regularizer=None,
finetune=False, start_epoch=0, finetune_conv=False,
additional_save=None, conditional_mask=False,
fragmented_reg=False, target_loss=False, mixtraining=False,
downstream_training=False, env=None, layers_to_save=None):
# Get data loaders
trainloader, testloader = ds.get_loaders(args.batch_size)
# Data augmentation for target samples
if args.mixup:
if 'ds_target' in env:
target_loader, _ = env['ds_target'].get_loaders(args.batch_size)
env['target_loader'] = target_loader
# Define evaluation criteria, model losses
criterion = nn.CrossEntropyLoss()
if finetune:
if args.arch.startswith('resnet'):
if finetune_conv:
optimizer = optim.SGD(
list(net.fc.parameters()) +
list(net.model.layer4.parameters()),
lr=args.lr, momentum=0.9, weight_decay=5e-4)
else:
optimizer = optim.SGD(
net.fc.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
elif args.arch == 'mobilenet':
if finetune_conv:
raise NotImplementedError()
else:
optimizer = optim.SGD(
net.classifier.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
else:
raise NotImplementedError()
else:
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
# if not downstream_training:
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
# else:
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.1)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=args.epochs)
# triplet_loss = TripletLoss('cuda')
triplet_loss = None
best_acc, best_loss = 0, np.inf # best test accuracy, test loss
# Prepare data for mix training
if mixtraining:
secondary_loader_train = env['secondary_loader']
secondary_loader_val = env['secondary_loader_val']
secondary_inputs, secondary_targets = [], []
secondary_inputs_val, secondary_targets_val = [], []
for inputs, targets in secondary_loader_train:
secondary_inputs.append(inputs)
secondary_targets.append(targets)
for inputs, targets in secondary_loader_val:
secondary_inputs_val.append(inputs)
secondary_targets_val.append(targets)
secondary_inputs, secondary_targets = ch.cat(
secondary_inputs), ch.cat(secondary_targets)
secondary_inputs_val, secondary_targets_val = (ch.cat(secondary_inputs_val),
ch.cat(secondary_targets_val))
env['secondary_inputs'], env['secondary_targets'] = secondary_inputs, secondary_targets
env['secondary_inputs_val'], env['secondary_targets_val'] = secondary_inputs_val, secondary_targets_val
for epoch_num in range(start_epoch, start_epoch + args.epochs):
print("Epoch [%d/%d]" % (epoch_num + 1, start_epoch + args.epochs))
if not downstream_training:
train_acc, train_loss = epoch(
trainloader, criterion, net, args, ds,
triplet_loss, regularizer, optimizer,
finetune=finetune, finetune_conv=finetune_conv,
conditional_mask=conditional_mask,
fragmented_reg=fragmented_reg, target_loss=target_loss, env=env)
logger.info("Epoch %d, train, acc: %.3f, loss: %.4f" %
(epoch_num, train_acc, train_loss))
# Test epoch
test_acc, test_loss = epoch(testloader, criterion, net,
args, ds, triplet_loss,
regularizer, finetune=finetune,
finetune_conv=finetune_conv,
conditional_mask=False,
fragmented_reg=fragmented_reg, target_loss=target_loss, env=env)
logger.info("Epoch %d, test, acc: %.3f, loss: %.4f" %
(epoch_num, test_acc, test_loss))
else:
train_acc, train_loss = downstream_epoch(
trainloader, criterion, net, args,
optimizer, finetune=finetune, finetune_conv=finetune_conv,
conditional_mask=conditional_mask, env=env)
logger.info("Epoch %d, train, acc: %.3f, loss: %.4f" %
(epoch_num, train_acc, train_loss))
# Test epoch
test_acc, test_loss = downstream_epoch(
testloader, criterion, net, args, finetune=finetune,
finetune_conv=finetune_conv, conditional_mask=False, env=env)
logger.info("Epoch %d, test, acc: %.3f, loss: %.4f" %
(epoch_num, test_acc, test_loss))
# Save checkpoint.
if args.loss_based_save:
if test_loss < best_loss:
print('Saving..')
logger.info('Saving')
save_model(net, test_acc, test_loss,
epoch_num, additional_save, args)
best_loss = test_loss
else:
if test_acc > best_acc:
print('Saving..')
logger.info('Saving')
save_model(net, test_acc, test_loss,
epoch_num, additional_save, args, partial_save=layers_to_save)
best_acc = test_acc
# LR scheduler
scheduler.step()
def get_relevant_state_dict(checkpoint, is_parallel=True, silent=False):
'''
Get relevant state-dict (handing dataparallel case)
'''
if 'net' in checkpoint:
check_point_dict = checkpoint['net']
elif 'state_dict' in checkpoint:
check_point_dict = checkpoint['state_dict']
else:
raise ValueError("Unknown case")
if not silent and 'acc' in checkpoint:
print("Checkpoint acc:", checkpoint['acc'])
else:
pass
# print("Checkpoint acc:", checkpoint['acc1'])
if not is_parallel:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in check_point_dict.items():
if 'module.' in k:
k = k[7:]
new_state_dict[k] = v
check_point_dict = new_state_dict
return check_point_dict
def resume_from_checkpoint(net, weights_path, for_finetune=False, get_checkpoint=False, is_parallel=True,
layers_not_resume=None, arch='resnet', silent=False):
'''
Args:
net: model, weights_path: checkpoint path, for_finetune: indicates downstream training if true
is_parallel: current training is using nn.parallel() if true, otherwise not
Return:
net: model with new parameters, checkpoint: optional, dict
'''
if not silent:
print('==> Resuming from checkpoint..')
assert os.path.isfile(weights_path), 'Error: no checkpoint file found!'
checkpoint = ch.load(weights_path)
# Extract relevant sate dict
check_point_dict = get_relevant_state_dict(checkpoint, is_parallel, silent)
if for_finetune:
if arch.startswith("resnet"):
check_point_dict = {k: v for k, v in check_point_dict.items() if not (k.startswith('model.fc.')
or k.startswith('fc.'))}
elif arch == 'mobilenet':
check_point_dict = {
k: v for k, v in check_point_dict.items() if not k.startswith('classifier.')}
else:
raise NotImplementedError()
if layers_not_resume is not None:
for layer_name in layers_not_resume:
check_point_dict = {
k: v for k, v in check_point_dict.items() if not (k.startswith(layer_name))}
source_names = set(check_point_dict.keys())
assert(len(source_names) > 0)
target_names = set(net.state_dict().keys())
assert(len(source_names.intersection(target_names)) == len(source_names))
net.load_state_dict(check_point_dict, strict=not for_finetune)
if get_checkpoint:
return net, checkpoint
return net