A tensorflow2.x implementatino of Wake-up Word Detection and Sepeaker Recognition
- Detect Wake-up Word
- Recognize Speaker
- tflite convert (Just type, quantization, pruning)
- Download requeirments.txt file
- Edit configuration.py
- Collect your data in custum_dataset folder for each users
- change_name.py
- data_augmentation.py (reverse, stretch, pitch, shift, noise)
Make Mel-log Spectrogram & data preprocess (Regularization, clip etc)
- *_data_preprocess.py (generate .npz file for train, valid, and test)
Best model will be saved in ./best_model
- *_train.py
- test_all.py
- orig_tflite.py
- quantization_tflite.py
- pruning_tflite.py
- tflite_evaluate.py ( evaluate all tflite model )
Check demo sample in ./demo
- python realtime_wuw.opy