-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcate.py
44 lines (35 loc) · 1.68 KB
/
cate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import argparse
from utils import *
def process_cate(args, topK=20):
word2emb = load_cate_emb(f'datasets/{args.dataset}/emb_{args.topic}_w.txt')
word2bert = load_bert_emb(f'datasets/{args.dataset}/{args.dataset}_bert')
cur_seeds = []
with open(f'datasets/{args.dataset}/{args.topic}_seeds.txt') as fin:
for line in fin:
data = line.strip().split(' ')
cur_seeds.append(data)
seeds = []
with open(f'datasets/{args.dataset}/{args.topic}.txt') as fin:
for line in fin:
data = line.strip()
seeds.append(data.split(' ')[0])
with open(f'datasets/{args.dataset}/intermediate_1.txt', 'w') as fout:
for seed, seeds in zip(seeds, cur_seeds):
score = {}
for word in word2emb:
if word not in word2bert:
continue
cate_cate = np.mean([np.dot(word2emb[word], word2emb[s]) for s in seeds])
cate_bert = np.mean([np.dot(word2bert[word], word2bert[s]) for s in seeds])
score[word] = cate_cate * cate_bert
score_sorted = sorted(score.items(), key=lambda x: x[1], reverse=True)
top_terms = [x[0] for x in score_sorted[:topK]]
fout.write(seed+':'+','.join(top_terms)+'\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='main', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='nyt', type=str)
parser.add_argument('--topic', default='topic', type=str)
parser.add_argument('--topk', default=20, type=int)
args = parser.parse_args()
process_cate(args, args.topk)