-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrank_ensemble.py
68 lines (54 loc) · 2.56 KB
/
rank_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import json
from collections import defaultdict
import math
from nltk.corpus import stopwords
import numpy as np
import argparse
from utils import *
def rank_ensemble(args, topk=20):
word2emb = load_cate_emb(f'datasets/{args.dataset}/emb_{args.topic}_w.txt')
word2bert = load_bert_emb(f'datasets/{args.dataset}/{args.dataset}_bert')
caseolap_results = []
with open(f'datasets/{args.dataset}/intermediate_2.txt') as fin:
for line in fin:
data = line.strip()
_, res = data.split(':')
caseolap_results.append(res.split(','))
cur_seeds = []
with open(f'datasets/{args.dataset}/{args.topic}_seeds.txt') as fin:
for line in fin:
data = line.strip().split(' ')
cur_seeds.append(data)
with open(f'datasets/{args.dataset}/{args.topic}_seeds.txt', 'w') as fout:
for seeds, caseolap_res in zip(cur_seeds, caseolap_results):
word2mrr = defaultdict(float)
# cate mrr
word2cate_score = {word:np.mean([np.dot(word2emb[word], word2emb[s]) for s in seeds]) for word in word2emb}
r = 1.
for w in sorted(word2cate_score.keys(), key=lambda x: word2cate_score[x], reverse=True)[:topk]:
if w not in word2bert: continue
word2mrr[w] += 1./r
r += 1
# bert mrr
word2bert_score = {word:np.mean([np.dot(word2bert[word], word2bert[s]) for s in seeds]) for word in word2bert}
r = 1.
for w in sorted(word2bert_score.keys(), key=lambda x: word2bert_score[x], reverse=True)[:topk]:
if w not in word2emb: continue
word2mrr[w] += 1./r
r += 1
# caseolap mrr
r = 1.
for w in caseolap_res[:topk]:
word2mrr[w] += 1./r
r += 1
score_sorted = sorted(word2mrr.items(), key=lambda x: x[1], reverse=True)
top_terms = [x[0].replace(' ', '') for x in score_sorted if x[1] > args.rank_ens and x[0] != '']
fout.write(' '.join(top_terms) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='main', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='nyt', type=str)
parser.add_argument('--topic', default='topic', type=str)
parser.add_argument('--topk', default=20, type=int)
parser.add_argument('--rank_ens', default=0.3, type=float)
args = parser.parse_args()
rank_ensemble(args, args.topk)