-
-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathsetup.py
54 lines (46 loc) · 1.86 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from setuptools import find_packages, setup
# read the contents of README file
from os import path
from io import open # for Python 2 and 3 compatibility
# get __version__ from _version.py
ver_file = path.join('metaod', 'version.py')
with open(ver_file) as f:
exec(f.read())
this_directory = path.abspath(path.dirname(__file__))
# read the contents of README.rst
def readme():
with open(path.join(this_directory, 'README.rst'), encoding='utf-8') as f:
return f.read()
# read the contents of requirements.txt
with open(path.join(this_directory, 'requirements.txt'),
encoding='utf-8') as f:
requirements = f.read().splitlines()
setup(
name='metaod',
version=__version__,
description='Automating Outlier Detection via Meta-Learning (selece/recommend OD model(s) for new datasets)',
long_description=readme(),
long_description_content_type='text/x-rst',
author='Yue Zhao',
author_email='[email protected]',
url='https://github.com/yzhao062/metaod',
download_url='https://github.com/yzhao062/metaod/archive/master.zip',
keywords=['outlier detection', 'anomaly detection', 'outlier ensembles',
'data mining', 'meta learning', 'AutoML'],
packages=find_packages(exclude=['test']),
include_package_data=True,
install_requires=requirements,
setup_requires=['setuptools>=38.6.0'],
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Education',
'Intended Audience :: Financial and Insurance Industry',
'Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'Intended Audience :: Information Technology',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
],
)