Chatbot 透過將語句向量化來計算主題相似度,再依結果提供迎合使用者需求的答覆。
更多的樣例可以參照 example/output.txt
輸入:明天早上叫我起床。
相似度 | 概念 | 匹配元 |
---|---|---|
0.4521 | 鬧鐘 | 起床 |
0.3904 | 天氣 | 早上 |
0.3067 | 住宿 | 起床 |
0.1747 | 病症 | 起床 |
0.1580 | 購買 | 早上 |
0.1270 | 股票 | 早上 |
0.1096 | 觀光 | 早上 |
輸入:明天上海會不會下雨?
相似度 | 概念 | 匹配元 |
---|---|---|
0.5665 | 天氣 | 下雨 |
0.3918 | 鬧鐘 | 下雨 |
0.1807 | 病症 | 下雨 |
0.1362 | 住宿 | 下雨 |
0.0000 | 股票 | |
0.0000 | 觀光 | |
0.0000 | 購買 |
- 安裝 python3 開發環境
- 安裝 gensim – Topic Modelling in Python
- 安裝 jieba 结巴中文分词
- 安裝 Taiba 中文分詞 : QA 使用,可以更換為 jieba 模組
- 有已訓練好的中文詞向量,並根據檔案位置調整
Console class
的初始化參數。
import Chatbot.console as console
c = console.Console(model_path='your_model')
- 目前問答系統的資料集尚未上傳至 Github,預設關閉問答模組
self.github_qa_unupdated=True
import Chatbot.chatbot as chatbot
chatter = chatbot.Chatbot()
chatter.waiting_loop()
import Chatbot.console as console
c = console.Console(model_path='your_model')
speech = input('Input a sentence:')
res,path = c.rule_match(speech)
c.write_output(speech,res,path)
規則採用 json 格式,樣板規則放置於\RuleMatcher\rule
中,
{
"domain": "代表這個規則的抽象概念",
"response": [
"對應到該規則後",
"機器人所會給予的回覆",
"機器人會隨機抽取一條 response"
],
"concepts": [
"該規則的可能表示方式"
],
"children": ["該規則的子規則","如購買 -> 購買飲料,購買衣服......"]
}
{
"domain": "購買",
"response": [
"正在將您導向購物模組"
],
"concepts": [
"購買","購物","訂購"
],
"children": [
"購買生活用品",
"購買家電",
"購買食物",
"購買飲料",
"購買鞋子",
"購買衣服",
"購買電腦產品"
]
},
- 追加規則案例
- 實作平台 adapter