forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_test_cityscapes.py
83 lines (68 loc) · 2.99 KB
/
local_test_cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from test_utils import download_file_and_uncompress, train, eval, vis, export_model
import os
import argparse
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
DATASET_PATH = os.path.join(LOCAL_PATH, "..", "dataset")
MODEL_PATH = os.path.join(LOCAL_PATH, "models")
def download_cityscapes_dataset(savepath, extrapath):
url = "https://paddleseg.bj.bcebos.com/dataset/cityscapes.tar"
download_file_and_uncompress(
url=url, savepath=savepath, extrapath=extrapath)
def download_deeplabv3p_xception65_cityscapes_model(savepath, extrapath):
url = "https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz"
download_file_and_uncompress(
url=url, savepath=savepath, extrapath=extrapath)
if __name__ == "__main__":
download_cityscapes_dataset(".", DATASET_PATH)
download_deeplabv3p_xception65_cityscapes_model(".", MODEL_PATH)
model_name = "deeplabv3p_xception65_cityscapes"
test_model = os.path.join(LOCAL_PATH, "models", model_name)
cfg = os.path.join(LOCAL_PATH, "configs", "{}.yaml".format(model_name))
freeze_save_dir = os.path.join(LOCAL_PATH, "inference_model", model_name)
vis_dir = os.path.join(LOCAL_PATH, "visual", model_name)
saved_model = os.path.join(LOCAL_PATH, "saved_model", model_name)
parser = argparse.ArgumentParser(description="PaddleSeg loacl test")
parser.add_argument(
"--devices",
dest="devices",
help="GPU id of running. if more than one, use spacing to separate.",
nargs="+",
default=[0],
type=int)
args = parser.parse_args()
devices = [str(x) for x in args.devices]
export_model(
flags=["--cfg", cfg],
options=[
"TEST.TEST_MODEL", test_model, "FREEZE.SAVE_DIR", freeze_save_dir
],
devices=devices)
# Final eval results should be #image=500 acc=0.9615 IoU=0.7804
eval(
flags=["--cfg", cfg, "--use_gpu"],
options=["TEST.TEST_MODEL", test_model],
devices=devices)
vis(flags=["--cfg", cfg, "--use_gpu", "--local_test", "--vis_dir", vis_dir],
options=["TEST.TEST_MODEL", test_model],
devices=devices)
train(
flags=["--cfg", cfg, "--use_gpu", "--log_steps", "10"],
options=[
"SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL_DIR", test_model,
"TRAIN.MODEL_SAVE_DIR", saved_model
],
devices=devices)