-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdemo.py
144 lines (129 loc) · 5.84 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
from torch.utils.data import DataLoader
import pandas as pd
import torch
from tqdm import tqdm
import cv2
import os
from config import get_seg_config
from classify_segment import Classify_Segment_Folds_Split, Classify_Segment_Fold
from datasets.steel_dataset import TestDataset, provider
def demo(classify_splits, seg_splits, mean, std, show_truemask_flag, dataloader, model_path, auto_flag, tta_flag, average_strategy):
'''
:param classify_splits: 分类模型的折数,类型为字典
:param seg_splits: 分割模型的折数,类型为字典
:param mean: 均值
:param std: 方差
:param dataloader: 数据加载器
:param show_truemask_flag: 是否显示真实标定
:param model_path: 当前模型权重存放的目录
:param tta_flag: 是否使用tta
:param average_strategy: 是否使用平均策略
:return: None
'''
if len(classify_splits) == 1 and len(seg_splits) == 1:
model = Classify_Segment_Fold(classify_splits, seg_splits, model_path, tta_flag=tta_flag, kaggle=0).classify_segment
else:
model = Classify_Segment_Folds_Split(classify_splits, seg_splits, model_path, tta_flag=tta_flag, kaggle=0).classify_segment_folds
# start prediction
if show_truemask_flag:
for samples in tqdm(dataloader):
if len(samples) == 0:
continue
images, masks = samples[0], samples[1]
if len(classify_splits) == 1 and len(seg_splits) == 1:
results = model(images).detach().cpu().numpy()
else:
results = model(images, average_strategy=average_strategy).detach().cpu().numpy()
pred_show(images, results, mean, std, targets=masks, flag=show_truemask_flag, auto_flag=auto_flag)
else:
for fnames, samples in tqdm(dataloader):
if len(samples) == 0:
continue
images, masks = samples[0], samples[1]
if len(classify_splits) == 1 and len(seg_splits) == 1:
results = model(images).detach().cpu().numpy()
else:
results = model(images, average_strategy=average_strategy).detach().cpu().numpy()
pred_show(images, results, mean, std, targets=None, flag=show_truemask_flag, auto_flag=auto_flag)
def pred_show(images, preds, mean, std, targets=None, flag=False, auto_flag=False):
"""可视化预测结果,与真实类别进行对比
:param images: 样本,tensor,[batch_size, 3, h, w]
:param preds: 预测结果,numpy.array,[batch_size, 4, h, w]
:param mean: 均值
:param std: 方差
:param targets: 真实标定,tensor,[batch_size, 4, h, w]
:param flag: 是否显示真实标定
:param auto_flag: 是否使用自动显示
:return: 无
"""
class_color = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (139, 0, 139)]
batch_size = images.size(0)
for index in range(batch_size):
# 将图片转换为RGB
image = images[index]
for i in range(3):
image[i] = image[i] * std[i]
image[i] = image[i] + mean[i]
image = image.permute(1, 2, 0).detach().cpu().numpy()
# 叠加预测的掩膜
pred = preds[index]
mask = np.zeros([pred.shape[1], pred.shape[2], 3])
for i in range(pred.shape[0]):
pred_0 = pred[i] * class_color[i][0]
pred_1 = pred[i] * class_color[i][1]
pred_2 = pred[i] * class_color[i][2]
mask += np.stack([pred_0, pred_1, pred_2], axis=2)
image_pred = image + mask
cv2.imshow('predict', image_pred)
# 叠加真实掩膜
if flag:
target = targets[index]
mask = torch.zeros(3, target.size(1), target.size(2))
for i in range(target.size(0)):
target_0 = target[i] * class_color[i][0]
target_1 = target[i] * class_color[i][1]
target_2 = target[i] * class_color[i][2]
mask += torch.stack([target_0, target_1, target_2], dim=0)
image_target = image + mask.permute(1, 2, 0).cpu().numpy()
cv2.imshow('target', image_target)
if auto_flag:
cv2.waitKey(240)
else:
cv2.waitKey(0)
if __name__ == "__main__":
config = get_seg_config()
config.batch_size = 1
# 设置超参数
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
classify_splits = {'unet_resnet34': 1, 'unet_resnet50': 1, 'unet_se_resnext50_32x4d': 1} # 'unet_resnet34': 1, 'unet_resnet50': 1, 'unet_se_resnext50_32x4d': 1
segment_splits = {'unet_resnet34': 1, 'unet_resnet50': 1, 'unet_se_resnext50_32x4d': 1} # 'unet_resnet34': 1, 'unet_resnet50': 1, 'unet_se_resnext50_32x4d': 1
# 在哪一折的验证集上进行验证
fold = 1
# 是否使用自动显示
auto_flag = False
# 是否显示真实的mask
show_truemask_flag = True
tta_flag = True
average_strategy = False
# 测试数据集的dataloader
sample_submission_path = 'datasets/Steel_data/sample_submission.csv'
test_data_folder = 'datasets/Steel_data/test_images'
df = pd.read_csv(sample_submission_path)
test_loader = DataLoader(
TestDataset(test_data_folder, df, mean, std),
batch_size=config.batch_size,
shuffle=False,
num_workers=config.num_workers,
pin_memory=True
)
# 加载验证集的dataloader
dataloaders = provider(config.dataset_root, os.path.join(config.dataset_root, 'train.csv'), mean, std, config.batch_size, config.num_workers, config.n_splits)
valid_loader = dataloaders[fold][1]
if show_truemask_flag:
dataloader = valid_loader
else:
dataloader = test_loader
demo(classify_splits, segment_splits, mean, std, show_truemask_flag, dataloader, \
model_path='./checkpoints/', auto_flag=auto_flag, tta_flag=tta_flag, average_strategy=average_strategy)