forked from airockchip/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
109 lines (89 loc) · 3.94 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run classification inference on images
Usage:
$ python classify/predict.py --weights yolov5s-cls.pt --source im.jpg
"""
import argparse
import os
import sys
from pathlib import Path
import cv2
import torch.nn.functional as F
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from classify.train import imshow_cls
from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.general import LOGGER, check_requirements, colorstr, increment_path, print_args
from utils.torch_utils import select_device, smart_inference_mode, time_sync
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
source=ROOT / 'data/images/bus.jpg', # file/dir/URL/glob, 0 for webcam
imgsz=224, # inference size
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
show=True,
project=ROOT / 'runs/predict-cls', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
):
file = str(source)
seen, dt = 1, [0.0, 0.0, 0.0]
device = select_device(device)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Transforms
transforms = classify_transforms(imgsz)
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
model.warmup(imgsz=(1, 3, imgsz, imgsz)) # warmup
# Image
t1 = time_sync()
im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB)
im = transforms(im).unsqueeze(0).to(device)
im = im.half() if model.fp16 else im.float()
t2 = time_sync()
dt[0] += t2 - t1
# Inference
results = model(im)
t3 = time_sync()
dt[1] += t3 - t2
p = F.softmax(results, dim=1) # probabilities
i = p.argsort(1, descending=True)[:, :5].squeeze() # top 5 indices
dt[2] += time_sync() - t3
LOGGER.info(f"image 1/1 {file}: {imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}")
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
shape = (1, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
if show:
imshow_cls(im, f=save_dir / Path(file).name, verbose=True)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
return p
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/images/bus.jpg', help='file')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)