Skip to content

Latest commit

 

History

History
 
 

internvl_g

InternVL Stage-2 Pre-training & Retrieval Fine-tuning

This folder contains the implementation of the InternVL 1.0 for stage2 pre-training and retrieval fine-tuning, which corresponds to Section 4.3 of our InternVL 1.0 paper.

image

🛠️ Installation

Follow the installation guide to perform installations.

📦 Data Preparation

Three datasets need to be prepared: COCO Caption, Flickr30K, and NoCaps.

COCO Caption
mkdir -p data/coco && cd data/coco

# download coco images
wget http://images.cocodataset.org/zips/train2014.zip && unzip train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip && unzip val2014.zip
wget http://images.cocodataset.org/zips/test2015.zip && unzip test2015.zip

mkdir -p annotations && cd annotations/
# download converted annotation files
wget https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json
wget https://github.com/OpenGVLab/InternVL/releases/download/data/coco_karpathy_test.json
wget https://github.com/OpenGVLab/InternVL/releases/download/data/coco_karpathy_test_gt.json
cd ../../../
Flickr30K
mkdir -p data/flickr30k && cd data/flickr30k

# download images from https://bryanplummer.com/Flickr30kEntities/
# karpathy split annotations can be downloaded from the following link:
# https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_test_karpathy.txt
# this file is provided by the clip-benchmark repository.
# We convert this txt file to json format, download the converted file:
wget https://github.com/OpenGVLab/InternVL/releases/download/data/flickr30k_cn_test.txt
wget https://github.com/OpenGVLab/InternVL/releases/download/data/flickr30k_cn_train.txt
wget https://github.com/OpenGVLab/InternVL/releases/download/data/flickr30k_test_karpathy.json
wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_test_karpathy.txt
wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_train_karpathy.txt
wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_val_karpathy.txt

cd ../..
NoCaps
mkdir -p data/nocaps && cd data/nocaps

# download images from https://nocaps.org/download
# original annotations can be downloaded from https://nocaps.s3.amazonaws.com/nocaps_val_4500_captions.json
wget https://nocaps.s3.amazonaws.com/nocaps_val_4500_captions.json

cd ../..

After the download is complete, the directory structure is:

data
├── coco
│   ├── annotations
│   │   ├── coco_karpathy_train.json
│   ├── test2017
│   ├── train2014
│   ├── train2017
│   ├── val2014
│   └── val2017
├── flickr30k
│   ├── flickr30k_cn_test.txt
│   ├── flickr30k_cn_train.txt
│   ├── flickr30k_test_karpathy.json
│   ├── flickr30k_test_karpathy.txt
│   ├── flickr30k_train_karpathy.txt
│   ├── flickr30k_val_karpathy.txt
│   └── Images
└── nocaps
    ├── images
    └── nocaps_val_4500_captions.json

📦 Model Preparation

model name type download size
InternVL-14B-224px huggingface 🤗 HF link 27.7 GB

Please download the above model weights and place them in the pretrained/ folder.

cd pretrained/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/InternVL-14B-224px --local-dir InternVL-14B-224px

The directory structure is:

pretrained
└── InternVL-14B-224px/

🔥 Generative Pre-training

There are currently no plans to release this part of the code.

📊 Evaluation

Zero-Shot Image Captioning

model dataset BLEU4 METEOR CIDEr
InternVL-G COCO Karpathy test 37.1 30.1 128.2
InternVL-G Flickr30K Karpathy test 27.0 25.3 79.2
InternVL-G NoCaps val 44.3 30.1 113.7
[InternVL-G] COCO Karpathy test
sh evaluate.sh pretrained/InternVL-14B-224px caption-coco

Expected results:

['coco', 'English caption:', 10.5974, dict_items([('Bleu_1', 0.7876323287981284), ('Bleu_2', 0.6353512494727918), ('Bleu_3', 0.49108984183589743), ('Bleu_4', 0.37062736733849205), ('METEOR', 0.30106315496945923), ('ROUGE_L', 0.5898249189475652), ('CIDEr', 1.281844384075423)])]
[InternVL-G] Flickr30K Karpathy test
sh evaluate.sh pretrained/InternVL-14B-224px caption-flickr30k

Expected results:

['flickr30k', 'English caption:', 10.666, dict_items([('Bleu_1', 0.7182900534357628), ('Bleu_2', 0.5353390037921949), ('Bleu_3', 0.3834462132295285), ('Bleu_4', 0.2702131471765472), ('METEOR', 0.25263515267930103), ('ROUGE_L', 0.5305876871149064), ('CIDEr', 0.7919734768328237)])]
[InternVL-G] NoCaps val
sh evaluate.sh pretrained/InternVL-14B-224px caption-nocaps

Expected results:

['nocaps', 'English caption:', 10.463111111111111, dict_items([('Bleu_1', 0.8518290482155187), ('Bleu_2', 0.7165227921485106), ('Bleu_3', 0.5733723839888316), ('Bleu_4', 0.44268902150723105), ('METEOR', 0.30078174807736896), ('ROUGE_L', 0.6070208063052156), ('CIDEr', 1.1371742045267772)])]

Fine-tuned Image-Text Retrieval

Flickr30K fine-tuned model: InternVL-14B-Flickr30K-FT-364px

model Flickr30K avg
image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10
InternVL-C-FT 97.2 100.0 100.0 88.5 98.4 99.2 97.2
InternVL-G-FT 97.9 100.0 100.0 89.6 98.6 99.2 97.6
[InternVL-C-FT] Flickr30K
cd ../clip_benchmark/
CUDA_VISIBLE_DEVICES=0 python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_retrieval" \
     --dataset "flickr30k" --dataset_root ./data/flickr30k --model internvl_c_retrieval_hf \
     --pretrained ./work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10/ --output result_ft.json

Expected results:

{"dataset": "flickr30k", "model": "internvl_c_retrieval_hf", "pretrained": "./work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10", "task": "zeroshot_retrieval",
"metrics": {"image_retrieval_recall@1": 0.8853999972343445, "text_retrieval_recall@1": 0.972000002861023,
"image_retrieval_recall@5": 0.9836000204086304, "text_retrieval_recall@5": 1.0,
"image_retrieval_recall@10": 0.9923999905586243, "text_retrieval_recall@10": 1.0}, "language": "en"}
[InternVL-G-FT] Flickr30K
cd ../clip_benchmark/
CUDA_VISIBLE_DEVICES=0 python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_retrieval" \
     --dataset "flickr30k" --dataset_root ./data/flickr30k --model internvl_g_retrieval_hf \
     --pretrained ./work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10/ --output result_ft.json

Expected results:

{"dataset": "flickr30k", "model": "internvl_g_retrieval_hf", "pretrained": "./work_dirs/internvl_stage2_finetune_flickr_364_bs1024_ep10", "task": "zeroshot_retrieval",
"metrics": {"image_retrieval_recall@1": 0.895799994468689, "text_retrieval_recall@1": 0.9789999723434448,
"image_retrieval_recall@5": 0.9861999750137329, "text_retrieval_recall@5": 1.0,
"image_retrieval_recall@10": 0.9922000169754028, "text_retrieval_recall@10": 1.0}, "language": "en"}

Flickr30K-CN fine-tuned model: InternVL-14B-FlickrCN-FT-364px

model Flickr30K-CN avg
image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10
InternVL-C-FT 96.5 99.9 100.0 85.2 97.0 98.5 96.2
InternVL-G-FT 96.9 99.9 100.0 85.9 97.1 98.7 96.4
[InternVL-C-FT] Flickr30K-CN
cd ../clip_benchmark/
CUDA_VISIBLE_DEVICES=0 python3 clip_benchmark/cli.py eval --model_type internvl --language "cn" --task "zeroshot_retrieval" \
     --dataset "flickr30k" --dataset_root ./data/flickr30k --model internvl_c_retrieval_hf \
     --pretrained ./work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10/ --output result_ft.json

Expected results:

{"dataset": "flickr30k", "model": "internvl_c_retrieval_hf", "pretrained": "./work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10", "task": "zeroshot_retrieval",
"metrics": {"image_retrieval_recall@1": 0.8521999716758728, "text_retrieval_recall@1": 0.9649999737739563,
"image_retrieval_recall@5": 0.9697999954223633, "text_retrieval_recall@5": 0.9990000128746033,
"image_retrieval_recall@10": 0.9854000210762024, "text_retrieval_recall@10": 1.0}, "language": "cn"}
[InternVL-G-FT] Flickr30K-CN
cd ../clip_benchmark/
CUDA_VISIBLE_DEVICES=0 python3 clip_benchmark/cli.py eval --model_type internvl --language "cn" --task "zeroshot_retrieval" \
     --dataset "flickr30k" --dataset_root ./data/flickr30k --model internvl_g_retrieval_hf \
     --pretrained ./work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10/ --output result_ft.json

Expected results:

{"dataset": "flickr30k", "model": "internvl_g_retrieval_hf", "pretrained": "./work_dirs/internvl_stage2_finetune_flickrcn_364_bs1024_ep10", "task": "zeroshot_retrieval",
"metrics": {"image_retrieval_recall@1": 0.8587999939918518, "text_retrieval_recall@1": 0.968999981880188,
"image_retrieval_recall@5": 0.9714000225067139, "text_retrieval_recall@5": 0.9990000128746033,
"image_retrieval_recall@10": 0.9865999817848206, "text_retrieval_recall@10": 1.0}, "language": "cn"}

🔥 Retrieval Fine-tuning (Fully)

Note: In our experiments, full parameter fine-tuning achieves the best results on image-text retrieval tasks in Flickr30K and COCO. By following the experimental hyperparameters in this section, you can reproduce the model performance reported in the Evaluation section.

To fine-tune InternVL on Flickr30K with 32 GPUs and slurm system, run:

PARTITION='your partition' GPUS=32 sh shell/finetune/internvl_stage2_finetune_flickr_364_bs1024_ep10.sh

To fine-tune InternVL on Flickr30K-CN with 32 GPUs and slurm system, run:

PARTITION='your partition' GPUS=32 sh shell/finetune/internvl_stage2_finetune_flickrcn_364_bs1024_ep10.sh

To fine-tune InternVL on COCO with 32 GPUs and slurm system, run:

PARTITION='your partition' GPUS=32 sh shell/finetune/internvl_stage2_finetune_coco_364_bs1024_ep5.sh

The hyperparameters used here are:

config Flickr30K Flickr30K-CN COCO
learning rate 1e-6 1e-6 1e-6
layer-wise lr
decay rate
InternViT-6B (0.9),
QLLaMA (0.9)
InternViT-6B (0.9),
QLLaMA (0.9)
InternViT-6B (0.9),
QLLaMA (0.9)
optimizer AdamW AdamW AdamW
weight decay 0.05 0.05 0.05
input resolution 364x364 364x364 364x364
total batch size 1024 1024 1024
warm-up iterations 100 100 100
training epochs 10 10 5
drop path rate 0.3 0.3 0.3
numerical precision zero1 + bf16 zero1 + bf16 zero1 + bf16
trainable / total params 14B / 14B 14B / 14B 14B / 14B
GPUs for training 32×A100 (80G) 32×A100 (80G) 32×A100 (80G)
Required GPU memory 80G 80G 80G

🔥 Retrieval Fine-tuning (Head)

Note: This section demonstrates how to perform a cost-effective fine-tuning of our model. The hyperparameters shown here are not optimized for any specific task. For practical applications, further adjustments to the hyperparameters may be necessary to achieve optimal performance.

To fine-tune the head of InternVL on Flickr30K with 4 GPUs, run:

GPUS=4 BATCH_SIZE=32 sh shell/head_finetune/internvl_stage2_finetune_flickr_224_bs1024_ep10_head_4gpu.sh

To fine-tune the head of InternVL on Flickr30K-CN with 4 GPUs, run:

GPUS=4 BATCH_SIZE=32 sh shell/head_finetune/internvl_stage2_finetune_flickrcn_224_bs1024_ep10_head_4gpu.sh

To fine-tune the head of InternVL on COCO with 4 GPUs, run:

GPUS=4 BATCH_SIZE=32 shell/head_finetune/internvl_stage2_finetune_coco_224_bs1024_ep5_head_4gpu.sh

The hyperparameters used here are:

config Flickr30K Flickr30K-CN COCO
learning rate 1e-6 1e-6 1e-6
optimizer AdamW AdamW AdamW
weight decay 0.05 0.05 0.05
input resolution 224x224 224x224 224x224
total batch size 4x32 4x32 4x32
warm-up iterations 100 100 100
training epochs 10 10 5
drop path rate 0.0 0.0 0.3
numerical precision zero3 + bf16 zero3 + bf16 zero1 + bf16
trainable / total params 0.2B / 14B 0.2B / 14B 0.2B / 14B
GPUs for training 4×GPU (>=32G) 4×GPU (>=32G) 4×GPU (>=32G)
Required GPU memory 24G 24G 24G

🔥 Retrieval Fine-tuning (LoRA)

Note: This section demonstrates how to perform a cost-effective fine-tuning of our model. The hyperparameters shown here are not optimized for any specific task. For practical applications, further adjustments to the hyperparameters may be necessary to achieve optimal performance.

To fine-tune InternVL using LoRA on Flickr30K with 4 GPUs, run:

GPUS=4 BATCH_SIZE=32 sh shell/lora_finetune/internvl_stage2_finetune_flickr_224_bs1024_ep10_lora16_4gpu.sh

To fine-tune InternVL using LoRA on Flickr30K-CN with 4 GPUs, run:

GPUS=4 BATCH_SIZE=32 sh shell/lora_finetune/internvl_stage2_finetune_flickrcn_224_bs1024_ep10_lora16_4gpu.sh

To fine-tune InternVL using LoRA on COCO with 4 GPUs, run:

GPUS=4 BATCH_SIZE=32 shell/lora_finetune/internvl_stage2_finetune_coco_224_bs1024_ep5_lora16_4gpu.sh

The hyperparameters used here are:

config Flickr30K Flickr30K-CN COCO
learning rate 1e-6 1e-6 1e-6
optimizer AdamW AdamW AdamW
lora rank 16 16 16
weight decay 0.05 0.05 0.05
input resolution 224x224 224x224 224x224
total batch size 4x32 4x32 4x32
warm-up iterations 100 100 100
training epochs 10 10 5
drop path rate 0.0 0.0 0.3
numerical precision zero3 + bf16 zero3 + bf16 zero1 + bf16
trainable / total params 0.3B / 14B 0.3B / 14B 0.3B / 14B
GPUs for training 4×GPU (>=40G) 4×GPU (>=40G) 4×GPU (>=40G)
Required GPU memory 37G 37G 37G

Fine-Tuning a Custom Dataset

  1. Organize Your Data: Format your dataset similar to COCO or Flickr30K.

  2. Update Meta Information: Add your dataset's meta information to the ds_collections dictionary in internvl_g/internvl/train/internvl_stage2_finetune.py. For example:

    ds_collections = {
        'my_dataset_flickr_format': {
            'root': './data/my_dataset/images/',
            'annotation': './data/my_dataset/annotations.txt',
        },
        'my_dataset_coco_format': {
            'root': './data/my_dataset/',
            'annotation': './data/my_dataset/annotations.json',
        },
    }
  3. Name Your Dataset:

    • Include flickr_format or coco_format in your dataset's dataset_name. This will allow the script to reuse the Flickr30K or COCO dataloader accordingly.

By following these steps, you can easily fine-tune the InternVL model on your custom dataset using the existing COCO or Flickr30K data loading mechanisms.