forked from ziqi-jin/finetune-anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemantic_seg.yaml
151 lines (137 loc) · 3.12 KB
/
semantic_seg.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
train:
experiment_name: 'semantic_sam'
# Model
model:
sam_name: 'sem_sam'
params:
# Fix the a part of parameters in SAM
fix_img_en: True
fix_prompt_en: True
fix_mask_de: False
ckpt_path: 'checkpoints/sam_vit_h_4b8939.pth'
class_num: 2 # 20 + 1
model_type: 'vit_h' # type should be in [vit_h, vit_b, vit_l, default]
# Dataset
# dataset:
# name: 'torch_voc_sem'
# params:
# root: '/data/jinziqi/DATASETS/'
# year: '2012'
# image_set: 'train'
# transforms:
# resize:
# params:
# size: [1024, 1024]
# to_tensor:
# params: ~
# target_transforms:
# resize:
# params:
# size: [1024, 1024]
# /path/to/my_dataset
# │
# └───img
# │ └───train
# │ │ │ sample0001.png
# │ │ │ sample0002.png
# │ │ │ ...
# │ └───val
# │ │ sample0003.png
# │ │ sample0004.png
# │ │ ...
# │
# └───ann
# └───train
# │ │ sample0001.png
# │ │ sample0002.png
# │ │ ...
# └───val
# │ sample0003.png
# │ sample0004.png
# │ ...
# Dataset
dataset:
name: 'base_sem'
params:
dataset_dir: './data/'
metainfo:
class_names: ['background', 'foreground']
image_set: 'train'
img_suffix: '.png'
ann_suffix: '.png'
data_prefix:
img_path: 'img'
ann_path: 'ann'
transforms:
resize:
params:
size: [1024, 1024]
to_tensor:
params: ~
target_transforms:
resize:
params:
size: [1024, 1024]
# Losses
losses:
ce:
weight: 0.5
params: # ~ means None type, the initial params of loss could be identified here
ignore_index: 255
label_one_hot: False
# Optimizer
opt_params:
lr_default: 1e-3
wd_default: 1e-4
momentum: 0.9
lr_list: [ 1e-2, ]
group_keys: [ [ 'mask_adapter.decoder_head.output_hypernetworks_mlps', ], ]
wd_list: [ 0.0, ]
opt_name: 'sgd' # 'sgd'
scheduler_name: 'cosine'
# Runner
max_iter: 1000
log_iter: 1
eval_iter: 5
runner_name: 'sem_runner'
# Dataloader
bs: 8 # 8
num_workers: 1
drop_last: True
# Logger
use_tensorboard: True
tensorboard_folder: './experiment/tensorboard'
log_folder: './experiment/log'
model_folder: './experiment/model'
val:
# Dataset
dataset:
name: 'base_sem'
params:
dataset_dir: './data/'
metainfo:
class_names: ['background', 'foreground']
image_set: 'val'
img_suffix: '.png'
ann_suffix: '.png'
data_prefix:
img_path: 'img'
ann_path: 'ann'
transforms:
resize:
params:
size: [1024, 1024]
to_tensor:
params: ~
target_transforms:
resize:
params:
size: [1024, 1024]
bs: 8
num_workers: 1
drop_last: True
test:
need_test: True
model_path: ./experiment/model/semantic_sam/model.pth
img_folder: ./data/img/val/
output_folder: ./experiment/output