-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfemTerm.h
220 lines (205 loc) · 7 KB
/
femTerm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#ifndef FEM_TERM_H
#define FEM_TERM_H
#include <math.h>
#include <map>
#include <vector>
#include "fullMatrix.h"
#include "simpleFunction.h"
#include "dofManager.h"
#include "GModel.h"
#include "SElement.h"
#include "groupOfElements.h"
// a nodal finite element term : variables are always defined at nodes
// of the mesh
template <class T> class femTerm {
private:
typedef typename dofTraits<T>::VecType dataVec;
typedef typename dofTraits<T>::MatType dataMat;
protected:
GModel *_gm;
public:
femTerm(GModel *gm) : _gm(gm) {}
virtual ~femTerm() {}
// return the number of columns of the element matrix
virtual int sizeOfC(SElement *se) const = 0;
// return the number of rows of the element matrix
virtual int sizeOfR(SElement *se) const = 0;
// in a given element, return the dof associated to a given row (column)
// of the local element matrix
virtual Dof getLocalDofR(SElement *se, int iRow) const = 0;
// default behavior: symmetric
virtual Dof getLocalDofC(SElement *se, int iCol) const
{
return getLocalDofR(se, iCol);
}
// compute the elementary matrix
virtual void elementMatrix(SElement *se, fullMatrix<dataMat> &m) const = 0;
virtual void elementVector(SElement *se, fullVector<dataVec> &m) const
{
m.scale(0.0);
}
// add the contribution from all the elements in the intersection
// of two element groups L and C
void addToMatrix(dofManager<dataVec> &dm, groupOfElements &L,
groupOfElements &C) const
{
groupOfElements::elementContainer::const_iterator it = L.begin();
for(; it != L.end(); ++it) {
MElement *eL = *it;
if(&C == &L || C.find(eL)) {
SElement se(eL);
addToMatrix(dm, &se);
}
}
}
// add the contribution from a single element to the dof manager
void addToMatrix(dofManager<dataVec> &dm, SElement *se) const
{
const int nbR = sizeOfR(se);
const int nbC = sizeOfC(se);
fullMatrix<dataMat> localMatrix(nbR, nbC);
elementMatrix(se, localMatrix);
addToMatrix(dm, localMatrix, se);
}
void addToMatrix(dofManager<dataVec> &dm, fullMatrix<dataMat> &localMatrix,
SElement *se) const
{
const int nbR = localMatrix.size1();
const int nbC = localMatrix.size2();
std::vector<Dof> R, C; // better use default consdtructors and reserve the
// right amount of space to avoid reallocation
R.reserve(nbR);
C.reserve(nbC);
bool sym = true;
if(nbR == nbC) {
for(int j = 0; j < nbR; j++) {
Dof r(getLocalDofR(se, j));
Dof c(getLocalDofC(se, j));
R.push_back(r);
C.push_back(c);
if(!(r == c)) sym = false;
}
}
else {
sym = false;
for(int j = 0; j < nbR; j++) R.push_back(getLocalDofR(se, j));
for(int k = 0; k < nbC; k++) C.push_back(getLocalDofC(se, k));
}
if(!sym)
dm.assemble(R, C, localMatrix);
else
dm.assemble(R, localMatrix);
}
void dirichletNodalBC(int physical, int dim, int comp, int field,
const simpleFunction<dataVec> &e,
dofManager<dataVec> &dm)
{
std::vector<MVertex *> v;
GModel *m = _gm;
m->getMeshVerticesForPhysicalGroup(dim, physical, v);
for(std::size_t i = 0; i < v.size(); i++)
dm.fixVertex(v[i], comp, field, e(v[i]->x(), v[i]->y(), v[i]->z()));
}
void neumannNodalBC(MElement *e, int comp, int field,
const simpleFunction<dataVec> &fct,
dofManager<dataVec> &dm)
{
double jac[3][3];
double sf[256];
int integrationOrder = 2 * e->getPolynomialOrder();
int npts;
IntPt *GP;
e->getIntegrationPoints(integrationOrder, &npts, &GP);
for(int ip = 0; ip < npts; ip++) {
const double u = GP[ip].pt[0];
const double v = GP[ip].pt[1];
const double w = GP[ip].pt[2];
const double weight = GP[ip].weight;
const double detJ = e->getJacobian(u, v, w, jac);
SPoint3 p;
e->pnt(u, v, w, p);
e->getShapeFunctions(u, v, w, sf);
const dataVec FCT = fct(p.x(), p.y(), p.z());
for(int k = 0; k < e->getNumShapeFunctions(); k++) {
dm.assemble(e->getShapeFunctionNode(k), comp, field,
detJ * weight * sf[k] * FCT);
}
}
}
void neumannNodalBC(int physical, int dim, int comp, int field,
const simpleFunction<dataVec> &fct,
dofManager<dataVec> &dm)
{
std::map<int, std::vector<GEntity *> > groups[4];
GModel *m = _gm;
m->getPhysicalGroups(groups);
std::map<int, std::vector<GEntity *> >::iterator it =
groups[dim].find(physical);
if(it == groups[dim].end()) return;
for(std::size_t i = 0; i < it->second.size(); ++i) {
GEntity *ge = it->second[i];
for(std::size_t j = 0; j < ge->getNumMeshElements(); j++) {
MElement *e = ge->getMeshElement(j);
neumannNodalBC(e, comp, field, fct, dm);
}
}
}
void neumannNormalNodalBC(int physical, int dim, int field,
const simpleFunction<dataVec> &fct,
dofManager<dataVec> &dm)
{
std::map<int, std::vector<GEntity *> > groups[4];
GModel *m = _gm;
m->getPhysicalGroups(groups);
std::map<int, std::vector<GEntity *> >::iterator it =
groups[dim].find(physical);
if(it == groups[dim].end()) return;
for(std::size_t i = 0; i < it->second.size(); ++i) {
GEntity *ge = it->second[i];
for(std::size_t j = 0; j < ge->getNumMeshElements(); j++) {
MElement *e = ge->getMeshElement(j);
neumannNodalBC(e, 0, field, fct, dm);
neumannNodalBC(e, 1, field, fct, dm);
neumannNodalBC(e, 2, field, fct, dm);
}
}
}
void addToRightHandSide(dofManager<dataVec> &dm, groupOfElements &C) const
{
groupOfElements::elementContainer::const_iterator it = C.begin();
for(; it != C.end(); ++it) {
MElement *eL = *it;
SElement se(eL);
int nbR = sizeOfR(&se);
fullVector<dataVec> V(nbR);
elementVector(&se, V);
// assembly
for(int j = 0; j < nbR; j++) dm.assemble(getLocalDofR(&se, j), V(j));
}
}
};
class DummyfemTerm : public femTerm<double> {
public:
typedef dofTraits<double>::VecType dataVec;
typedef dofTraits<double>::MatType dataMat;
DummyfemTerm(GModel *gm) : femTerm<double>(gm) {}
virtual ~DummyfemTerm() {}
private: // i dont want to mess with this anymore
virtual int sizeOfC(SElement *se) const { return 0; }
virtual int sizeOfR(SElement *se) const { return 0; }
virtual Dof getLocalDofR(SElement *se, int iRow) const { return Dof(0, 0); }
virtual Dof getLocalDofC(SElement *se, int iCol) const { return Dof(0, 0); }
virtual void elementMatrix(SElement *se, fullMatrix<dataMat> &m) const
{
m.scale(0.);
}
virtual void elementVector(SElement *se, fullVector<dataVec> &m) const
{
m.scale(0.);
}
};
#endif