-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpooling.cpp
1613 lines (1170 loc) · 48.7 KB
/
pooling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*++
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT License.
Module Name:
pooling.cpp
Abstract:
This module implements the pooling operation.
--*/
#include "mlasi.h"
//
// Define the parameters to execute segments of a pooling operation on worker
// threads.
//
struct MLAS_POOL_WORK_BLOCK
{
MLAS_POOLING_KIND PoolingKind;
size_t InputShape[3];
size_t InputSize;
size_t OutputShape[3];
int64_t KernelShape[3];
int64_t Padding[6];
int64_t StrideShape[3];
};
//
// Define the prototype of the pooling kernel routine.
//
typedef
void
(MLAS_POOL_KERNEL_ROUTINE)(
const MLAS_POOL_WORK_BLOCK* WorkBlock,
size_t ChannelCount,
const float* Input,
float* Output
);
//
// Define the number of elements to allocate on the stack for the reduction
// buffer in the vectorized kernels.
//
#define MLAS_POOL_REDUCTION_BUFFER_STACK 2048
//
// Define the number of reduction buffer elements reserved for over-reading
// an entire vector to avoid special handling at the right edge of the
// buffer.
//
#define MLAS_POOL_REDUCTION_BUFFER_PADDING ((sizeof(MLAS_FLOAT32X4) / sizeof(float)) - 1)
//
// Abstraction for maximum pooling.
//
struct MLAS_MAXIMUM_POOLING
{
static constexpr float InitialValue()
{
return std::numeric_limits<float>::lowest();
}
static MLAS_FLOAT32X4 InitialVector()
{
return MlasBroadcastFloat32x4(InitialValue());
}
static constexpr float Reduce(float Reduction, float Value)
{
return std::max(Reduction, Value);
}
static MLAS_FLOAT32X4 Reduce(MLAS_FLOAT32X4 Reduction, MLAS_FLOAT32X4 Value)
{
return MlasMaximumFloat32x4(Reduction, Value);
}
static float Reduce(MLAS_FLOAT32X4 Reduction)
{
return MlasReduceMaximumFloat32x4(Reduction);
}
static constexpr float AveragePool(float Reduction, float Size)
{
MLAS_UNREFERENCED_PARAMETER(Size);
return Reduction;
}
struct DividerVectorContext
{
void PrepareExcludePad(size_t PaddingLeftWidth, size_t InputWidth, size_t KernelWidth)
{
MLAS_UNREFERENCED_PARAMETER(PaddingLeftWidth);
MLAS_UNREFERENCED_PARAMETER(InputWidth);
MLAS_UNREFERENCED_PARAMETER(KernelWidth);
}
void PrepareIncludePad(size_t KernelSize)
{
MLAS_UNREFERENCED_PARAMETER(KernelSize);
}
void StartNextOutputRow(size_t InputRowsCount)
{
MLAS_UNREFERENCED_PARAMETER(InputRowsCount);
}
MLAS_FLOAT32X4 DivideExcludePad(MLAS_FLOAT32X4 Reduction)
{
return Reduction;
}
MLAS_FLOAT32X4 DivideIncludePad(MLAS_FLOAT32X4 Reduction)
{
return Reduction;
}
};
};
//
// Abstraction for average pooling.
//
MLAS_DECLSPEC_ALIGN(static const float MlasInitialReductionInputIndex[], sizeof(MLAS_FLOAT32X4)) = { 0.0f, 1.0f, 2.0f, 3.0f };
struct MLAS_AVERAGE_POOLING
{
static float InitialValue()
{
return 0.0f;
}
static MLAS_FLOAT32X4 InitialVector()
{
return MlasZeroFloat32x4();
}
static constexpr float Reduce(float Reduction, float Value)
{
return Reduction + Value;
}
static MLAS_FLOAT32X4 Reduce(MLAS_FLOAT32X4 Reduction, MLAS_FLOAT32X4 Value)
{
return MlasAddFloat32x4(Reduction, Value);
}
static float Reduce(MLAS_FLOAT32X4 Reduction)
{
return MlasReduceAddFloat32x4(Reduction);
}
static constexpr float AveragePool(float Reduction, float Size)
{
return Reduction / Size;
}
struct DividerVectorContext
{
MLAS_FLOAT32X4 KernelSizeBroadcast;
MLAS_FLOAT32X4 KernelWidthBroadcast;
MLAS_FLOAT32X4 PaddingLowerBound;
MLAS_FLOAT32X4 PaddingUpperBound;
MLAS_FLOAT32X4 ReductionInputIndex;
MLAS_FLOAT32X4 InputRowsBroadcast;
void PrepareExcludePad(size_t PaddingLeftWidth, size_t InputWidth, size_t KernelWidth)
{
KernelWidthBroadcast = MlasBroadcastFloat32x4(float(unsigned(KernelWidth)));
PaddingLowerBound = MlasBroadcastFloat32x4(float(unsigned(PaddingLeftWidth)));
PaddingUpperBound = MlasBroadcastFloat32x4(float(unsigned(PaddingLeftWidth + InputWidth)));
}
void PrepareIncludePad(size_t KernelSize)
{
KernelSizeBroadcast = MlasBroadcastFloat32x4(float(unsigned(KernelSize)));
}
void StartNextOutputRow(size_t InputRowsCount)
{
ReductionInputIndex = MlasLoadFloat32x4(MlasInitialReductionInputIndex);
InputRowsBroadcast = MlasBroadcastFloat32x4(float(unsigned(InputRowsCount)));
}
MLAS_FLOAT32X4 DivideExcludePad(MLAS_FLOAT32X4 Reduction)
{
MLAS_FLOAT32X4 Divisor;
//
// Compute the ending input index for each column and bound the index
// range by the padding indices, then compute the number of input
// column contributions from the delta.
//
MLAS_FLOAT32X4 ReductionInputEndingIndex =
MlasAddFloat32x4(ReductionInputIndex, KernelWidthBroadcast);
MLAS_FLOAT32X4 LowerInputIndex =
MlasMaximumFloat32x4(ReductionInputIndex, PaddingLowerBound);
MLAS_FLOAT32X4 UpperInputIndex =
MlasMinimumFloat32x4(ReductionInputEndingIndex, PaddingUpperBound);
MLAS_FLOAT32X4 InputIndexDelta =
MlasSubtractFloat32x4(UpperInputIndex, LowerInputIndex);
//
// Advance the input index vector for the next iteration.
//
ReductionInputIndex =
MlasAddFloat32x4(ReductionInputIndex, MlasBroadcastFloat32x4(4.0f));
//
// Compute the per-column number of input elements used for the sum.
//
// At the end of the input row, the index range computed above may be
// zero for unused trailing vector elements, so avoid any divide by zero
// penalty by enforcing a minimum of 1.0f.
//
Divisor = MlasMultiplyFloat32x4(InputIndexDelta, InputRowsBroadcast);
Divisor = MlasMaximumFloat32x4(Divisor, MlasBroadcastFloat32x4(1.0f));
return MlasDivideFloat32x4(Reduction, Divisor);
}
MLAS_FLOAT32X4 DivideIncludePad(MLAS_FLOAT32X4 Reduction)
{
return MlasDivideFloat32x4(Reduction, KernelSizeBroadcast);
}
};
};
template<typename PoolingType>
void
MlasPool1DKernel(
const MLAS_POOL_WORK_BLOCK* WorkBlock,
size_t ChannelCount,
const float* Input,
float* Output
)
/*++
Routine Description:
This routine implements the 1D pooling operation using generic constructs.
Arguments:
WorkBlock - Supplies the structure that contains the pooling parameters.
ChannelCount - Supplies the number of channels to process.
Input - Supplies the input tensor.
Output - Supplies the output tensor.
Return Value:
None.
--*/
{
constexpr size_t WidthShapeIndex = 0;
const MLAS_POOLING_KIND PoolingKind = WorkBlock->PoolingKind;
const size_t InputWidth = WorkBlock->InputShape[WidthShapeIndex];
const size_t OutputWidth = WorkBlock->OutputShape[WidthShapeIndex];
const int64_t KernelWidth = WorkBlock->KernelShape[WidthShapeIndex];
const int64_t PaddingLeftWidth = WorkBlock->Padding[WidthShapeIndex];
const int64_t StrideWidth = WorkBlock->StrideShape[WidthShapeIndex];
for (size_t c = 0; c < ChannelCount; c++) {
for (size_t pw = 0; pw < OutputWidth; pw++) {
const int64_t iwStart64 = pw * StrideWidth - PaddingLeftWidth;
const int64_t iwEnd64 = iwStart64 + KernelWidth;
const size_t iwStart = size_t(std::max(iwStart64, int64_t(0)));
const size_t iwEnd = size_t(std::min(iwEnd64, int64_t(InputWidth)));
float m = PoolingType::InitialValue();
for (size_t iw = size_t(iwStart); iw < size_t(iwEnd); iw++) {
m = PoolingType::Reduce(m, Input[iw]);
}
if (PoolingKind == MlasAveragePoolingExcludePad) {
m = PoolingType::AveragePool(m, float(iwEnd - iwStart));
} else {
m = PoolingType::AveragePool(m, float(KernelWidth));
}
*Output++ = m;
}
Input += InputWidth;
}
}
template<typename PoolingType>
void
MlasPool2DKernel(
const MLAS_POOL_WORK_BLOCK* WorkBlock,
size_t ChannelCount,
const float* Input,
float* Output
)
/*++
Routine Description:
This routine implements the 2D pooling operation using generic constructs.
Arguments:
WorkBlock - Supplies the structure that contains the pooling parameters.
ChannelCount - Supplies the number of channels to process.
Input - Supplies the input tensor.
Output - Supplies the output tensor.
Return Value:
None.
--*/
{
constexpr size_t HeightShapeIndex = 0;
constexpr size_t WidthShapeIndex = 1;
const MLAS_POOLING_KIND PoolingKind = WorkBlock->PoolingKind;
const size_t InputHeight = WorkBlock->InputShape[HeightShapeIndex];
const size_t InputWidth = WorkBlock->InputShape[WidthShapeIndex];
const size_t InputSize = WorkBlock->InputSize;
const size_t OutputHeight = WorkBlock->OutputShape[HeightShapeIndex];
const size_t OutputWidth = WorkBlock->OutputShape[WidthShapeIndex];
const int64_t KernelHeight = WorkBlock->KernelShape[HeightShapeIndex];
const int64_t KernelWidth = WorkBlock->KernelShape[WidthShapeIndex];
const int64_t PaddingLeftHeight = WorkBlock->Padding[HeightShapeIndex];
const int64_t PaddingLeftWidth = WorkBlock->Padding[WidthShapeIndex];
const int64_t StrideHeight = WorkBlock->StrideShape[HeightShapeIndex];
const int64_t StrideWidth = WorkBlock->StrideShape[WidthShapeIndex];
for (size_t c = 0; c < ChannelCount; c++) {
for (size_t ph = 0; ph < OutputHeight; ph++) {
const int64_t ihStart64 = ph * StrideHeight - PaddingLeftHeight;
const int64_t ihEnd64 = ihStart64 + KernelHeight;
const size_t ihStart = size_t(std::max(ihStart64, int64_t(0)));
const size_t ihEnd = size_t(std::min(ihEnd64, int64_t(InputHeight)));
for (size_t pw = 0; pw < OutputWidth; pw++) {
const int64_t iwStart64 = pw * StrideWidth - PaddingLeftWidth;
const int64_t iwEnd64 = iwStart64 + KernelWidth;
const size_t iwStart = size_t(std::max(iwStart64, int64_t(0)));
const size_t iwEnd = size_t(std::min(iwEnd64, int64_t(InputWidth)));
float m = PoolingType::InitialValue();
for (size_t ih = ihStart; ih < ihEnd; ih++) {
for (size_t iw = iwStart; iw < iwEnd; iw++) {
m = PoolingType::Reduce(m, Input[ih * InputWidth + iw]);
}
}
if (PoolingKind == MlasAveragePoolingExcludePad) {
m = PoolingType::AveragePool(m, float((ihEnd - ihStart) * (iwEnd - iwStart)));
} else {
m = PoolingType::AveragePool(m, float(KernelHeight * KernelWidth));
}
*Output++ = m;
}
}
Input += InputSize;
}
}
template<typename PoolingType>
void
MlasPool2DVectorKernel(
const MLAS_POOL_WORK_BLOCK* WorkBlock,
size_t ChannelCount,
const float* Input,
float* Output
)
/*++
Routine Description:
This routine implements an optimized 2D pooling operation using vector
instructions.
Arguments:
WorkBlock - Supplies the structure that contains the pooling parameters.
ChannelCount - Supplies the number of channels to process.
Input - Supplies the input tensor.
Output - Supplies the output tensor.
Return Value:
None.
--*/
{
constexpr size_t Dimensions = 2;
constexpr size_t HeightShapeIndex = 0;
constexpr size_t WidthShapeIndex = 1;
const MLAS_POOLING_KIND PoolingKind = WorkBlock->PoolingKind;
const size_t InputHeight = WorkBlock->InputShape[HeightShapeIndex];
const size_t InputWidth = WorkBlock->InputShape[WidthShapeIndex];
const size_t InputSize = WorkBlock->InputSize;
const size_t OutputHeight = WorkBlock->OutputShape[HeightShapeIndex];
const size_t OutputWidth = WorkBlock->OutputShape[WidthShapeIndex];
const size_t KernelHeight = size_t(WorkBlock->KernelShape[HeightShapeIndex]);
const size_t KernelWidth = size_t(WorkBlock->KernelShape[WidthShapeIndex]);
const size_t PaddingLeftHeight = size_t(WorkBlock->Padding[HeightShapeIndex]);
const size_t PaddingLeftWidth = size_t(WorkBlock->Padding[WidthShapeIndex]);
const size_t PaddingRightWidth = size_t(WorkBlock->Padding[Dimensions + WidthShapeIndex]);
const size_t StrideHeight = size_t(WorkBlock->StrideShape[HeightShapeIndex]);
const size_t StrideWidth = size_t(WorkBlock->StrideShape[WidthShapeIndex]);
float ReductionBuffer[MLAS_POOL_REDUCTION_BUFFER_STACK];
//
// Fill the edges of the reduction buffer with the padding value.
//
float* FillReductionBuffer = ReductionBuffer;
float* FillReductionBufferEnd = FillReductionBuffer + PaddingLeftWidth;
while (FillReductionBuffer < FillReductionBufferEnd) {
*FillReductionBuffer++ = PoolingType::InitialValue();
}
FillReductionBuffer = FillReductionBuffer + InputWidth;
FillReductionBufferEnd = FillReductionBuffer + PaddingRightWidth + MLAS_POOL_REDUCTION_BUFFER_PADDING;
while (FillReductionBuffer < FillReductionBufferEnd) {
*FillReductionBuffer++ = PoolingType::InitialValue();
}
//
// Apply the pooling operation to each channel.
//
typename PoolingType::DividerVectorContext divider;
divider.PrepareExcludePad(PaddingLeftWidth, InputWidth, KernelWidth);
divider.PrepareIncludePad(KernelHeight * KernelWidth);
for (size_t c = 0; c < ChannelCount; c++) {
for (size_t ph = 0; ph < OutputHeight; ph++) {
size_t ihStart = ph * StrideHeight - PaddingLeftHeight;
size_t ihEnd = ihStart + KernelHeight;
if (ihStart >= InputHeight) {
ihStart = 0;
}
if (ihEnd > InputHeight) {
ihEnd = InputHeight;
}
divider.StartNextOutputRow(ihEnd - ihStart);
//
// Reduce the input across the kernel height and store in a local
// reduction buffer.
//
const float* InputRowStart = &Input[ihStart * InputWidth];
const size_t InputRowsCount = ihEnd - ihStart - 1;
size_t InputWidthRemaining = InputWidth;
float* ReductionOutput = &ReductionBuffer[PaddingLeftWidth];
while (InputWidthRemaining >= 4) {
const float* InputRow = InputRowStart;
size_t InputRowsRemaining = InputRowsCount;
MLAS_FLOAT32X4 Reduction = MlasLoadFloat32x4(InputRow);
while (InputRowsRemaining > 0) {
InputRow += InputWidth;
Reduction = PoolingType::Reduce(Reduction, MlasLoadFloat32x4(InputRow));
InputRowsRemaining--;
}
MlasStoreFloat32x4(ReductionOutput, Reduction);
ReductionOutput += 4;
InputRowStart += 4;
InputWidthRemaining -= 4;
}
while (InputWidthRemaining > 0) {
const float* InputRow = InputRowStart;
size_t InputRowsRemaining = InputRowsCount;
float Reduction = *InputRow;
while (InputRowsRemaining > 0) {
InputRow += InputWidth;
Reduction = PoolingType::Reduce(Reduction, *InputRow);
InputRowsRemaining--;
}
*ReductionOutput++ = Reduction;
InputRowStart += 1;
InputWidthRemaining -= 1;
}
//
// Reduce the input across the kernel width and store to the output
// tensor.
//
size_t OutputWidthRemaining = OutputWidth;
const float* ReductionInputStart = ReductionBuffer;
do {
const float* ReductionInput = ReductionInputStart;
const float* ReductionInputEnd = ReductionInput + KernelWidth;
MLAS_FLOAT32X4 Reduction = MlasLoadFloat32x4(ReductionInput++);
while (ReductionInput < ReductionInputEnd) {
Reduction = PoolingType::Reduce(Reduction, MlasLoadFloat32x4(ReductionInput++));
}
if (PoolingKind == MlasAveragePoolingExcludePad) {
Reduction = divider.DivideExcludePad(Reduction);
} else {
Reduction = divider.DivideIncludePad(Reduction);
}
if (StrideWidth == 1) {
if (OutputWidthRemaining < 4) {
if (OutputWidthRemaining >= 2) {
MlasStoreLowHalfFloat32x4(Output, Reduction);
if (OutputWidthRemaining > 2) {
MlasStoreLaneFloat32x4<2>(Output + 2, Reduction);
}
} else {
MlasStoreLaneFloat32x4<0>(Output, Reduction);
}
Output += OutputWidthRemaining;
break;
}
MlasStoreFloat32x4(Output, Reduction);
Output += 4;
OutputWidthRemaining -= 4;
} else {
if (OutputWidthRemaining == 1) {
MlasStoreLaneFloat32x4<0>(Output++, Reduction);
break;
}
#if defined(MLAS_SSE2_INTRINSICS)
Reduction = _mm_shuffle_ps(Reduction, Reduction, _MM_SHUFFLE(2, 0, 2, 0));
MlasStoreLowHalfFloat32x4(Output, Reduction);
#else
MlasStoreLaneFloat32x4<0>(Output, Reduction);
MlasStoreLaneFloat32x4<2>(Output + 1, Reduction);
#endif
Output += 2;
OutputWidthRemaining -= 2;
}
ReductionInputStart += 4;
} while (OutputWidthRemaining > 0);
}
Input += InputSize;
}
}
template<typename PoolingType>
void
MlasPool3DKernel(
const MLAS_POOL_WORK_BLOCK* WorkBlock,
size_t ChannelCount,
const float* Input,
float* Output
)
/*++
Routine Description:
This routine implements the 3D pooling operation using generic constructs.
Arguments:
WorkBlock - Supplies the structure that contains the pooling parameters.
ChannelCount - Supplies the number of channels to process.
Input - Supplies the input tensor.
Output - Supplies the output tensor.
Return Value:
None.
--*/
{
constexpr size_t DepthShapeIndex = 0;
constexpr size_t HeightShapeIndex = 1;
constexpr size_t WidthShapeIndex = 2;
const MLAS_POOLING_KIND PoolingKind = WorkBlock->PoolingKind;
const size_t InputDepth = WorkBlock->InputShape[DepthShapeIndex];
const size_t InputHeight = WorkBlock->InputShape[HeightShapeIndex];
const size_t InputWidth = WorkBlock->InputShape[WidthShapeIndex];
const size_t InputSize = WorkBlock->InputSize;
const size_t OutputDepth = WorkBlock->OutputShape[DepthShapeIndex];
const size_t OutputHeight = WorkBlock->OutputShape[HeightShapeIndex];
const size_t OutputWidth = WorkBlock->OutputShape[WidthShapeIndex];
const int64_t KernelDepth = WorkBlock->KernelShape[DepthShapeIndex];
const int64_t KernelHeight = WorkBlock->KernelShape[HeightShapeIndex];
const int64_t KernelWidth = WorkBlock->KernelShape[WidthShapeIndex];
const int64_t PaddingLeftDepth = WorkBlock->Padding[DepthShapeIndex];
const int64_t PaddingLeftHeight = WorkBlock->Padding[HeightShapeIndex];
const int64_t PaddingLeftWidth = WorkBlock->Padding[WidthShapeIndex];
const int64_t StrideDepth = WorkBlock->StrideShape[DepthShapeIndex];
const int64_t StrideHeight = WorkBlock->StrideShape[HeightShapeIndex];
const int64_t StrideWidth = WorkBlock->StrideShape[WidthShapeIndex];
for (size_t c = 0; c < ChannelCount; c++) {
for (size_t pd = 0; pd < OutputDepth; pd++) {
const int64_t idStart64 = pd * StrideDepth - PaddingLeftDepth;
const int64_t idEnd64 = idStart64 + KernelDepth;
const size_t idStart = size_t(std::max(idStart64, int64_t(0)));
const size_t idEnd = size_t(std::min(idEnd64, int64_t(InputDepth)));
for (size_t ph = 0; ph < OutputHeight; ph++) {
const int64_t ihStart64 = ph * StrideHeight - PaddingLeftHeight;
const int64_t ihEnd64 = ihStart64 + KernelHeight;
const size_t ihStart = size_t(std::max(ihStart64, int64_t(0)));
const size_t ihEnd = size_t(std::min(ihEnd64, int64_t(InputHeight)));
for (size_t pw = 0; pw < OutputWidth; pw++) {
const int64_t iwStart64 = pw * StrideWidth - PaddingLeftWidth;
const int64_t iwEnd64 = iwStart64 + KernelWidth;
const size_t iwStart = size_t(std::max(iwStart64, int64_t(0)));
const size_t iwEnd = size_t(std::min(iwEnd64, int64_t(InputWidth)));
float m = PoolingType::InitialValue();
for (size_t id = idStart; id < idEnd; id++) {
for (size_t ih = ihStart; ih < ihEnd; ih++) {
for (size_t iw = iwStart; iw < iwEnd; iw++) {
m = PoolingType::Reduce(m, Input[id * InputHeight * InputWidth + ih * InputWidth + iw]);
}
}
}
if (PoolingKind == MlasAveragePoolingExcludePad) {
m = PoolingType::AveragePool(m, float((idEnd - idStart) * (ihEnd - ihStart) * (iwEnd - iwStart)));
} else {
m = PoolingType::AveragePool(m, float(KernelDepth * KernelHeight * KernelWidth));
}
*Output++ = m;
}
}
}
Input += InputSize;
}
}
template<typename PoolingType>
void
MlasPool3DVectorKernel(
const MLAS_POOL_WORK_BLOCK* WorkBlock,
size_t ChannelCount,
const float* Input,
float* Output
)
/*++
Routine Description:
This routine implements an optimized 2D pooling operation using vector
instructions.
Arguments:
WorkBlock - Supplies the structure that contains the pooling parameters.
ChannelCount - Supplies the number of channels to process.
Input - Supplies the input tensor.
Output - Supplies the output tensor.
Return Value:
None.
--*/
{
constexpr size_t Dimensions = 3;
constexpr size_t DepthShapeIndex = 0;
constexpr size_t HeightShapeIndex = 1;
constexpr size_t WidthShapeIndex = 2;
const MLAS_POOLING_KIND PoolingKind = WorkBlock->PoolingKind;
const size_t InputDepth = WorkBlock->InputShape[DepthShapeIndex];
const size_t InputHeight = WorkBlock->InputShape[HeightShapeIndex];
const size_t InputWidth = WorkBlock->InputShape[WidthShapeIndex];
const size_t InputSize = WorkBlock->InputSize;
const size_t OutputDepth = WorkBlock->OutputShape[DepthShapeIndex];
const size_t OutputHeight = WorkBlock->OutputShape[HeightShapeIndex];
const size_t OutputWidth = WorkBlock->OutputShape[WidthShapeIndex];
const size_t KernelDepth = size_t(WorkBlock->KernelShape[DepthShapeIndex]);
const size_t KernelHeight = size_t(WorkBlock->KernelShape[HeightShapeIndex]);
const size_t KernelWidth = size_t(WorkBlock->KernelShape[WidthShapeIndex]);
const size_t PaddingLeftDepth = size_t(WorkBlock->Padding[DepthShapeIndex]);
const size_t PaddingLeftHeight = size_t(WorkBlock->Padding[HeightShapeIndex]);
const size_t PaddingLeftWidth = size_t(WorkBlock->Padding[WidthShapeIndex]);
const size_t PaddingRightWidth = size_t(WorkBlock->Padding[Dimensions + WidthShapeIndex]);
const size_t StrideDepth = size_t(WorkBlock->StrideShape[DepthShapeIndex]);
const size_t StrideHeight = size_t(WorkBlock->StrideShape[HeightShapeIndex]);
const size_t StrideWidth = size_t(WorkBlock->StrideShape[WidthShapeIndex]);
float ReductionBuffer[MLAS_POOL_REDUCTION_BUFFER_STACK];
//
// Fill the edges of the reduction buffer with the padding value.
//
float* FillReductionBuffer = ReductionBuffer;
float* FillReductionBufferEnd = FillReductionBuffer + PaddingLeftWidth;
while (FillReductionBuffer < FillReductionBufferEnd) {
*FillReductionBuffer++ = PoolingType::InitialValue();
}
FillReductionBuffer = FillReductionBuffer + InputWidth;
FillReductionBufferEnd = FillReductionBuffer + PaddingRightWidth + MLAS_POOL_REDUCTION_BUFFER_PADDING;
while (FillReductionBuffer < FillReductionBufferEnd) {
*FillReductionBuffer++ = PoolingType::InitialValue();
}
//
// Apply the pooling operation to each channel.
//
typename PoolingType::DividerVectorContext divider;
divider.PrepareExcludePad(PaddingLeftWidth, InputWidth, KernelWidth);
divider.PrepareIncludePad(KernelDepth * KernelHeight * KernelWidth);
for (size_t c = 0; c < ChannelCount; c++) {
for (size_t pd = 0; pd < OutputDepth; pd++) {
size_t idStart = pd * StrideDepth - PaddingLeftDepth;
size_t idEnd = idStart + KernelDepth;
if (idStart >= InputDepth) {
idStart = 0;
}
if (idEnd > InputDepth) {
idEnd = InputDepth;
}
for (size_t ph = 0; ph < OutputHeight; ph++) {
size_t ihStart = ph * StrideHeight - PaddingLeftHeight;
size_t ihEnd = ihStart + KernelHeight;
if (ihStart >= InputHeight) {
ihStart = 0;
}
if (ihEnd > InputHeight) {
ihEnd = InputHeight;
}
divider.StartNextOutputRow((idEnd - idStart) * (ihEnd - ihStart));
//
// Reduce the input across the kernel height and store in a local
// reduction buffer.
//
const float* InputRowStart = &Input[idStart * InputHeight * InputWidth + ihStart * InputWidth];
const size_t InputPlanesCount = idEnd - idStart;
const size_t InputRowsCount = ihEnd - ihStart;
size_t InputWidthRemaining = InputWidth;
float* ReductionOutput = &ReductionBuffer[PaddingLeftWidth];
const size_t InputAdvancePlane = (InputHeight - InputRowsCount) * InputWidth;
while (InputWidthRemaining >= 4) {
const float* InputRow = InputRowStart;
size_t InputPlanesRemaining = InputPlanesCount;
MLAS_FLOAT32X4 Reduction = PoolingType::InitialVector();
do {
size_t InputRowsRemaining = InputRowsCount;
do {
Reduction = PoolingType::Reduce(Reduction, MlasLoadFloat32x4(InputRow));
InputRow += InputWidth;
InputRowsRemaining--;
} while (InputRowsRemaining > 0);
InputRow += InputAdvancePlane;
InputPlanesRemaining--;
} while (InputPlanesRemaining > 0);
MlasStoreFloat32x4(ReductionOutput, Reduction);
ReductionOutput += 4;
InputRowStart += 4;
InputWidthRemaining -= 4;
}
while (InputWidthRemaining > 0) {
const float* InputRow = InputRowStart;
size_t InputPlanesRemaining = InputPlanesCount;
float Reduction = PoolingType::InitialValue();
do {
size_t InputRowsRemaining = InputRowsCount;
do {
Reduction = PoolingType::Reduce(Reduction, *InputRow);
InputRow += InputWidth;
InputRowsRemaining--;
} while (InputRowsRemaining > 0);
InputRow += InputAdvancePlane;
InputPlanesRemaining--;
} while (InputPlanesRemaining > 0);
*ReductionOutput++ = Reduction;
InputRowStart += 1;
InputWidthRemaining -= 1;
}
//
// Reduce the input across the kernel width and store to the output
// tensor.
//
size_t OutputWidthRemaining = OutputWidth;
const float* ReductionInputStart = ReductionBuffer;
do {
const float* ReductionInput = ReductionInputStart;
const float* ReductionInputEnd = ReductionInput + KernelWidth;
MLAS_FLOAT32X4 Reduction = MlasLoadFloat32x4(ReductionInput++);
while (ReductionInput < ReductionInputEnd) {
Reduction = PoolingType::Reduce(Reduction, MlasLoadFloat32x4(ReductionInput++));
}
if (PoolingKind == MlasAveragePoolingExcludePad) {
Reduction = divider.DivideExcludePad(Reduction);
} else {
Reduction = divider.DivideIncludePad(Reduction);
}
if (StrideWidth == 1) {
if (OutputWidthRemaining < 4) {
if (OutputWidthRemaining >= 2) {
MlasStoreLowHalfFloat32x4(Output, Reduction);
if (OutputWidthRemaining > 2) {
MlasStoreLaneFloat32x4<2>(Output + 2, Reduction);
}
} else {
MlasStoreLaneFloat32x4<0>(Output, Reduction);
}
Output += OutputWidthRemaining;
break;
}
MlasStoreFloat32x4(Output, Reduction);
Output += 4;
OutputWidthRemaining -= 4;
} else {
if (OutputWidthRemaining == 1) {
MlasStoreLaneFloat32x4<0>(Output++, Reduction);
break;
}
#if defined(MLAS_SSE2_INTRINSICS)
Reduction = _mm_shuffle_ps(Reduction, Reduction, _MM_SHUFFLE(2, 0, 2, 0));
MlasStoreLowHalfFloat32x4(Output, Reduction);
#else
MlasStoreLaneFloat32x4<0>(Output, Reduction);
MlasStoreLaneFloat32x4<2>(Output + 1, Reduction);
#endif
Output += 2;
OutputWidthRemaining -= 2;
}
ReductionInputStart += 4;
} while (OutputWidthRemaining > 0);
}
}
Input += InputSize;
}
}
template<typename PoolingType>
void
MlasPoolGlobalKernel(
const MLAS_POOL_WORK_BLOCK* WorkBlock,