forked from phenixace/TOMG-Bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.py
279 lines (235 loc) · 9.95 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
'''
For vllm query inference
'''
from openai import OpenAI
import os
import re
import json
import rdkit
import argparse
import pandas as pd
from tqdm import tqdm
from rdkit import Chem
from utils.dataset import OMGDataset, TMGDataset
import transformers
from transformers import pipeline
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import dispatch_model, infer_auto_device_map
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="quantized_models/llama3-70b/")
parser.add_argument("--name", type=str, default="llama3-70B")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--load_lora", type=bool, default=False)
parser.add_argument("--lora_model_path", type=str, default="")
# dataset settings
parser.add_argument("--benchmark", type=str, default="open_generation")
parser.add_argument("--task", type=str, default="MolCustom")
parser.add_argument("--subtask", type=str, default="AtomNum")
parser.add_argument("--output_dir", type=str, default="./predictions/")
parser.add_argument("--temperature", type=float, default=0.75)
parser.add_argument("--top_p", type=float, default=0.85)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--num_return_sequences", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--json_check", action="store_true", default=False)
parser.add_argument("--smiles_check", action="store_true", default=False)
# add a log option to record the output
parser.add_argument("--log", action="store_true", default=False)
args = parser.parse_args()
if "mistral" in args.model:
args.mistral = True
else:
args.mistral = False
# print parameters
print("========Parameters========")
for attr, value in args.__dict__.items():
print("{}={}".format(attr.upper(), value))
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://10.140.24.31:{}/v1".format(args.port)
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# check out put dir
args.output_dir = args.output_dir + args.name + "/" + args.benchmark + "/" + args.task + "/"
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if os.path.exists(args.output_dir + args.subtask + ".csv"):
temp = pd.read_csv(args.output_dir + args.subtask + ".csv")
start_pos = len(temp)
else:
with open(args.output_dir + args.subtask + ".csv", "w+") as f:
f.write("outputs\n")
start_pos = 0
print("========Inference Init========")
print("Inference starts from: ", start_pos)
# load dataset
if args.benchmark == "open_generation":
inference_dataset = OMGDataset(args.task, args.subtask, args.json_check)
elif args.benchmark == "targeted_generation":
inference_dataset = TMGDataset(args.task, args.subtask, args.json_check)
print("========Sanity Check========")
print(inference_dataset[0])
print("Total length of the dataset:", len(inference_dataset))
print("==============================")
error_records = []
#device = torch.device('cuda')
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size > 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
#gradient_accumulation_steps = gradient_accumulation_steps // world_size
# if not ddp and torch.cuda.device_count() > 1:
# # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
# model.is_parallelizable = True
# model.model_parallel = True
if args.load_lora == True:
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, attn_implementation="eager", device_map=device_map, trust_remote_code=True).eval()
print(f"Loading LoRA weights from {args.lora_model_path}")
model = PeftModel.from_pretrained(model, args.lora_model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print('Convert to BF16...')
model = model.to(torch.bfloat16)
else:
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
args.model,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map=device_map,
).eval()
pipeline = transformers.pipeline(
"text-generation",
model=args.model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
temperature=args.temperature,
trust_remote_code=True,
top_p=args.top_p,
)
with tqdm(total=len(inference_dataset)-start_pos) as pbar:
for idx in range(start_pos, len(inference_dataset)):
cur_seed = args.seed
error_allowance = 0
while True:
try:
"""
completion = client.chat.completions.create(
model=args.model,
messages=inference_dataset[idx],
max_tokens=args.max_new_tokens,
temperature=args.temperature,
top_p=args.top_p,
n=args.num_return_sequences,
stop=["</s>", "<|end_of_text|>", "<|eot_id|>"],
seed=cur_seed
)
s = completion.choices[0].message.content
"""
prompt = inference_dataset[idx]
inputs = tokenizer.apply_chat_template(prompt,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(model.device)
gen_kwargs = {"max_length": args.max_new_tokens, "do_sample": True, "temperature": args.temperature, "top_p": args.top_p}
#outputs = pipeline(prompt, max_new_tokens=args.max_new_tokens)
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
s = tokenizer.decode(outputs[0], skip_special_tokens=True)
except:
# change random seed
cur_seed += 1
error_allowance += 1
if error_allowance > 10:
s = "None" # empty string
error_records.append(idx)
break
else:
continue
s = s.replace('""', '"').strip()
print("Raw:", s)
if s == None:
cur_seed += 1
error_allowance += 1
if error_allowance > 10:
s = "" # empty string
error_records.append(idx)
break
else:
continue
if args.log:
with open(args.output_dir + args.subtask + ".log", "a+") as f:
f.write(s.replace('\n', ' ').strip() + "\n")
if args.json_check:
match = re.search(r'\{.*?\}', s, re.DOTALL)
if match:
json_str = match.group()
try:
json_obj = json.loads(json_str)
s = json_obj["molecule"]
# add smiles check
if args.smiles_check:
try:
mol = Chem.MolFromSmiles(s)
if mol is None:
cur_seed += 1
error_allowance += 1
if error_allowance > 10:
error_records.append(idx)
break
else:
continue
except:
cur_seed += 1
error_allowance += 1
if error_allowance > 10:
error_records.append(idx)
break
else:
continue
break
except:
# change random seed
cur_seed += 1
error_allowance += 1
if error_allowance > 10:
error_records.append(idx)
break
else:
continue
else:
# change random seed
cur_seed += 1
error_allowance += 1
if error_allowance > 10:
error_records.append(idx)
break
else:
continue
else:
break
print("Checked:", s)
# check again
if not isinstance(s, str):
s = str(s)
s = s.replace('\n', ' ').strip() # remove newline characters
df = pd.DataFrame([s.strip()], columns=["outputs"])
df.to_csv(args.output_dir + args.subtask + ".csv", mode='a', header=False, index=True)
# with open(args.output_dir + "/output_" + args.task + ".txt", "a+") as f:
# f.write(s.replace('\n', ' ').strip() + "\n")
pbar.update(1)
print("========Inference Done========")
print("Error Records: ", error_records)