-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0072-edit-distance.cpp
66 lines (62 loc) · 1.82 KB
/
0072-edit-distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
* 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数
*
* 你可以对一个单词进行如下三种操作:
*
* 插入一个字符
* 删除一个字符
* 替换一个字符
*
* 输入:word1 = "horse", word2 = "ros"
* 输出:3
* 解释:
* horse -> rorse (将 'h' 替换为 'r')
* rorse -> rose (删除 'r')
* rose -> ros (删除 'e')
*
* 输入:word1 = "intention", word2 = "execution"
* 输出:5
* 解释:
* intention -> inention (删除 't')
* inention -> enention (将 'i' 替换为 'e')
* enention -> exention (将 'n' 替换为 'x')
* exention -> exection (将 'n' 替换为 'c')
* exection -> execution (插入 'u')
*
*
* 解析:
* 作者:ikaruga
* 链接:https://leetcode-cn.com/problems/edit-distance/solution/edit-distance-by-ikaruga/
*/
#include <algorithm>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
// dp[i][j]含义:word1在0到i(前i个字符) 变换到 word2在0到j(前j个字符) 需要最少的编辑距离
int minDistance(string word1, string word2) {
int m = word1.size();
int n = word2.size();
int dp[m + 1][n + 1];
memset(dp, 0, sizeof(dp));
// base case 如果word2为空
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
// base case 如果word1为空
for (int j = 1; j <= n; j++) {
dp[0][j] = j;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = min(dp[i][j], dp[i - 1][j - 1]);
}
}
}
return dp[m][n];
}
};