forked from kaixindelele/ChatPaper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat_paper.py
483 lines (447 loc) · 25.7 KB
/
chat_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import numpy as np
import os
import re
import datetime
import arxiv
import openai, tenacity
import base64, requests
import argparse
import configparser
import json
import tiktoken
from get_paper_from_pdf import Paper
# 定义Reader类
class Reader:
# 初始化方法,设置属性
def __init__(self, key_word, query, filter_keys,
root_path='./',
gitee_key='',
sort=arxiv.SortCriterion.SubmittedDate, user_name='defualt', args=None):
self.user_name = user_name # 读者姓名
self.key_word = key_word # 读者感兴趣的关键词
self.query = query # 读者输入的搜索查询
self.sort = sort # 读者选择的排序方式
if args.language == 'en':
self.language = 'English'
elif args.language == 'zh':
self.language = 'Chinese'
else:
self.language = 'Chinese'
self.filter_keys = filter_keys # 用于在摘要中筛选的关键词
self.root_path = root_path
# 创建一个ConfigParser对象
self.config = configparser.ConfigParser()
# 读取配置文件
self.config.read('apikey.ini')
# 获取某个键对应的值
self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',')
self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5]
self.cur_api = 0
self.file_format = args.file_format
if args.save_image:
self.gitee_key = self.config.get('Gitee', 'api')
else:
self.gitee_key = ''
self.max_token_num = 4096
self.encoding = tiktoken.get_encoding("gpt2")
def get_arxiv(self, max_results=30):
search = arxiv.Search(query=self.query,
max_results=max_results,
sort_by=self.sort,
sort_order=arxiv.SortOrder.Descending,
)
return search
def filter_arxiv(self, max_results=30):
search = self.get_arxiv(max_results=max_results)
print("all search:")
for index, result in enumerate(search.results()):
print(index, result.title, result.updated)
filter_results = []
filter_keys = self.filter_keys
print("filter_keys:", self.filter_keys)
# 确保每个关键词都能在摘要中找到,才算是目标论文
for index, result in enumerate(search.results()):
abs_text = result.summary.replace('-\n', '-').replace('\n', ' ')
meet_num = 0
for f_key in filter_keys.split(" "):
if f_key.lower() in abs_text.lower():
meet_num += 1
if meet_num == len(filter_keys.split(" ")):
filter_results.append(result)
# break
print("筛选后剩下的论文数量:")
print("filter_results:", len(filter_results))
print("filter_papers:")
for index, result in enumerate(filter_results):
print(index, result.title, result.updated)
return filter_results
def validateTitle(self, title):
# 将论文的乱七八糟的路径格式修正
rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |'
new_title = re.sub(rstr, "_", title) # 替换为下划线
return new_title
def download_pdf(self, filter_results):
# 先创建文件夹
date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
key_word = str(self.key_word.replace(':', ' '))
path = self.root_path + 'pdf_files/' + self.query.replace('au: ', '').replace('title: ', '').replace('ti: ', '').replace(':', ' ')[:25] + '-' + date_str
try:
os.makedirs(path)
except:
pass
print("All_paper:", len(filter_results))
# 开始下载:
paper_list = []
for r_index, result in enumerate(filter_results):
try:
title_str = self.validateTitle(result.title)
pdf_name = title_str+'.pdf'
# result.download_pdf(path, filename=pdf_name)
self.try_download_pdf(result, path, pdf_name)
paper_path = os.path.join(path, pdf_name)
print("paper_path:", paper_path)
paper = Paper(path=paper_path,
url=result.entry_id,
title=result.title,
abs=result.summary.replace('-\n', '-').replace('\n', ' '),
authers=[str(aut) for aut in result.authors],
)
# 下载完毕,开始解析:
paper.parse_pdf()
paper_list.append(paper)
except Exception as e:
print("download_error:", e)
pass
return paper_list
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def try_download_pdf(self, result, path, pdf_name):
result.download_pdf(path, filename=pdf_name)
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def upload_gitee(self, image_path, image_name='', ext='png'):
"""
上传到码云
:return:
"""
with open(image_path, 'rb') as f:
base64_data = base64.b64encode(f.read())
base64_content = base64_data.decode()
date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(' ', '-') + '.' + ext
path = image_name+ '-' +date_str
payload = {
"access_token": self.gitee_key,
"owner": self.config.get('Gitee', 'owner'),
"repo": self.config.get('Gitee', 'repo'),
"path": self.config.get('Gitee', 'path'),
"content": base64_content,
"message": "upload image"
}
# 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字:
url = f'https://gitee.com/api/v5/repos/'+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/'+path
rep = requests.post(url, json=payload).json()
print("rep:", rep)
if 'content' in rep.keys():
image_url = rep['content']['download_url']
else:
image_url = r"https://gitee.com/api/v5/repos/"+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/' + path
return image_url
def summary_with_chat(self, paper_list):
htmls = []
for paper_index, paper in enumerate(paper_list):
# 第一步先用title,abs,和introduction进行总结。
text = ''
text += 'Title:' + paper.title
text += 'Url:' + paper.url
text += 'Abstrat:' + paper.abs
text += 'Paper_info:' + paper.section_text_dict['paper_info']
# intro
text += list(paper.section_text_dict.values())[0]
chat_summary_text = ""
try:
chat_summary_text = self.chat_summary(text=text)
except Exception as e:
print("summary_error:", e)
if "maximum context" in str(e):
current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1
offset = int(str(e)[current_tokens_index:current_tokens_index+4])
summary_prompt_token = offset+1000+150
chat_summary_text = self.chat_summary(text=text, summary_prompt_token=summary_prompt_token)
htmls.append('## Paper:' + str(paper_index+1))
htmls.append('\n\n\n')
htmls.append(chat_summary_text)
# 第二步总结方法:
# TODO,由于有些文章的方法章节名是算法名,所以简单的通过关键词来筛选,很难获取,后面需要用其他的方案去优化。
method_key = ''
for parse_key in paper.section_text_dict.keys():
if 'method' in parse_key.lower() or 'approach' in parse_key.lower():
method_key = parse_key
break
if method_key != '':
text = ''
method_text = ''
summary_text = ''
summary_text += "<summary>" + chat_summary_text
# methods
method_text += paper.section_text_dict[method_key]
text = summary_text + "\n\n<Methods>:\n\n" + method_text
chat_method_text = ""
try:
chat_method_text = self.chat_method(text=text)
except Exception as e:
print("method_error:", e)
if "maximum context" in str(e):
current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1
offset = int(str(e)[current_tokens_index:current_tokens_index+4])
method_prompt_token = offset+800+150
chat_method_text = self.chat_method(text=text, method_prompt_token=method_prompt_token)
htmls.append(chat_method_text)
else:
chat_method_text = ''
htmls.append("\n"*4)
# 第三步总结全文,并打分:
conclusion_key = ''
for parse_key in paper.section_text_dict.keys():
if 'conclu' in parse_key.lower():
conclusion_key = parse_key
break
text = ''
conclusion_text = ''
summary_text = ''
summary_text += "<summary>" + chat_summary_text + "\n <Method summary>:\n" + chat_method_text
if conclusion_key != '':
# conclusion
conclusion_text += paper.section_text_dict[conclusion_key]
text = summary_text + "\n\n<Conclusion>:\n\n" + conclusion_text
else:
text = summary_text
chat_conclusion_text = ""
try:
chat_conclusion_text = self.chat_conclusion(text=text)
except Exception as e:
print("conclusion_error:", e)
if "maximum context" in str(e):
current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1
offset = int(str(e)[current_tokens_index:current_tokens_index+4])
conclusion_prompt_token = offset+800+150
chat_conclusion_text = self.chat_conclusion(text=text, conclusion_prompt_token=conclusion_prompt_token)
htmls.append(chat_conclusion_text)
htmls.append("\n"*4)
# # 整合成一个文件,打包保存下来。
date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
try:
export_path = os.path.join(self.root_path, 'export')
os.makedirs(export_path)
except:
pass
mode = 'w' if paper_index == 0 else 'a'
file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title[:80])+"."+self.file_format)
self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode)
# file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title)+".md")
# self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode)
htmls = []
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_conclusion(self, text, conclusion_prompt_token = 800):
openai.api_key = self.chat_api_list[self.cur_api]
self.cur_api += 1
self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
text_token = len(self.encoding.encode(text))
clip_text_index = int(len(text)*(self.max_token_num-conclusion_prompt_token)/text_token)
clip_text = text[:clip_text_index]
messages=[
{"role": "system", "content": "You are a reviewer in the field of ["+self.key_word+"] and you need to critically review this article"}, # chatgpt 角色
{"role": "assistant", "content": "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:"+clip_text}, # 背景知识,可以参考OpenReview的审稿流程
{"role": "user", "content": """
8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English).
- (1):What is the significance of this piece of work?
- (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload.
.......
Follow the format of the output later:
8. Conclusion: \n\n
- (1):xxx;\n
- (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n
Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write.
""".format(self.language, self.language)},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
# prompt需要用英语替换,少占用token。
messages=messages,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("conclusion_result:\n", result)
print("prompt_token_used:", response.usage.prompt_tokens,
"completion_token_used:", response.usage.completion_tokens,
"total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms/1000.0, 's')
return result
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_method(self, text, method_prompt_token = 800):
openai.api_key = self.chat_api_list[self.cur_api]
self.cur_api += 1
self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
text_token = len(self.encoding.encode(text))
clip_text_index = int(len(text)*(self.max_token_num-method_prompt_token)/text_token)
clip_text = text[:clip_text_index]
messages=[
{"role": "system", "content": "You are a researcher in the field of ["+self.key_word+"] who is good at summarizing papers using concise statements"}, # chatgpt 角色
{"role": "assistant", "content": "This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions."+clip_text}, # 背景知识
{"role": "user", "content": """
7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are.
- (1):...
- (2):...
- (3):...
- .......
Follow the format of the output that follows:
7. Methods: \n\n
- (1):xxx;\n
- (2):xxx;\n
- (3):xxx;\n
....... \n\n
Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write.
""".format(self.language, self.language)},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("method_result:\n", result)
print("prompt_token_used:", response.usage.prompt_tokens,
"completion_token_used:", response.usage.completion_tokens,
"total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms/1000.0, 's')
return result
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_summary(self, text, summary_prompt_token = 1100):
openai.api_key = self.chat_api_list[self.cur_api]
self.cur_api += 1
self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api
text_token = len(self.encoding.encode(text))
clip_text_index = int(len(text)*(self.max_token_num-summary_prompt_token)/text_token)
clip_text = text[:clip_text_index]
messages=[
{"role": "system", "content": "You are a researcher in the field of ["+self.key_word+"] who is good at summarizing papers using concise statements"},
{"role": "assistant", "content": "This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: "+clip_text},
{"role": "user", "content": """
1. Mark the title of the paper (with Chinese translation)
2. list all the authors' names (use English)
3. mark the first author's affiliation (output {} translation only)
4. mark the keywords of this article (use English)
5. link to the paper, Github code link (if available, fill in Github:None if not)
6. summarize according to the following four points.Be sure to use {} answers (proper nouns need to be marked in English)
- (1):What is the research background of this article?
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
- (3):What is the research methodology proposed in this paper?
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
Follow the format of the output that follows:
1. Title: xxx\n\n
2. Authors: xxx\n\n
3. Affiliation: xxx\n\n
4. Keywords: xxx\n\n
5. Urls: xxx or xxx , xxx \n\n
6. Summary: \n\n
- (1):xxx;\n
- (2):xxx;\n
- (3):xxx;\n
- (4):xxx.\n\n
Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed.
""".format(self.language, self.language, self.language)},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("summary_result:\n", result)
print("prompt_token_used:", response.usage.prompt_tokens,
"completion_token_used:", response.usage.completion_tokens,
"total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms/1000.0, 's')
return result
def export_to_markdown(self, text, file_name, mode='w'):
# 使用markdown模块的convert方法,将文本转换为html格式
# html = markdown.markdown(text)
# 打开一个文件,以写入模式
with open(file_name, mode, encoding="utf-8") as f:
# 将html格式的内容写入文件
f.write(text)
# 定义一个方法,打印出读者信息
def show_info(self):
print(f"Key word: {self.key_word}")
print(f"Query: {self.query}")
print(f"Sort: {self.sort}")
def main(args):
# 创建一个Reader对象,并调用show_info方法
if args.sort == 'Relevance':
sort = arxiv.SortCriterion.Relevance
elif args.sort == 'LastUpdatedDate':
sort = arxiv.SortCriterion.LastUpdatedDate
else:
sort = arxiv.SortCriterion.Relevance
if args.pdf_path:
reader1 = Reader(key_word=args.key_word,
query=args.query,
filter_keys=args.filter_keys,
sort=sort,
args=args
)
reader1.show_info()
# 开始判断是路径还是文件:
paper_list = []
if args.pdf_path.endswith(".pdf"):
paper_list.append(Paper(path=args.pdf_path))
else:
for root, dirs, files in os.walk(args.pdf_path):
print("root:", root, "dirs:", dirs, 'files:', files) #当前目录路径
for filename in files:
# 如果找到PDF文件,则将其复制到目标文件夹中
if filename.endswith(".pdf"):
paper_list.append(Paper(path=os.path.join(root, filename)))
print("------------------paper_num: {}------------------".format(len(paper_list)))
[print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)]
reader1.summary_with_chat(paper_list=paper_list)
else:
reader1 = Reader(key_word=args.key_word,
query=args.query,
filter_keys=args.filter_keys,
sort=sort,
args=args
)
reader1.show_info()
filter_results = reader1.filter_arxiv(max_results=args.max_results)
paper_list = reader1.download_pdf(filter_results)
reader1.summary_with_chat(paper_list=paper_list)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# parser.add_argument("--pdf_path", type=str, default=r'demo.pdf', help="if none, the bot will download from arxiv with query")
# parser.add_argument("--pdf_path", type=str, default=r'C:\Users\Administrator\Desktop\DHER\RHER_Reset\ChatPaper', help="if none, the bot will download from arxiv with query")
parser.add_argument("--pdf_path", type=str, default='', help="if none, the bot will download from arxiv with query")
parser.add_argument("--query", type=str, default='all: ChatGPT robot', help="the query string, ti: xx, au: xx, all: xx,")
parser.add_argument("--key_word", type=str, default='reinforcement learning', help="the key word of user research fields")
parser.add_argument("--filter_keys", type=str, default='ChatGPT robot', help="the filter key words, 摘要中每个单词都得有,才会被筛选为目标论文")
parser.add_argument("--max_results", type=int, default=1, help="the maximum number of results")
# arxiv.SortCriterion.Relevance
parser.add_argument("--sort", type=str, default="Relevance", help="another is LastUpdatedDate")
parser.add_argument("--save_image", default=False, help="save image? It takes a minute or two to save a picture! But pretty")
parser.add_argument("--file_format", type=str, default='md', help="导出的文件格式,如果存图片的话,最好是md,如果不是的话,txt的不会乱")
parser.add_argument("--language", type=str, default='zh', help="The other output lauguage is English, is en")
args = parser.parse_args()
import time
start_time = time.time()
main(args=args)
print("summary time:", time.time() - start_time)