@@ -749,6 +749,9 @@ def predict(Theta1,Theta2,X):
749
749
![ enter description here] [ 35 ]
750
750
- 最后` 10 ` 步之后的聚类中心
751
751
![ enter description here] [ 36 ]
752
+
753
+ -
754
+
752
755
- 计算每条数据到哪个中心最近实现代码:
753
756
```
754
757
# 找到每条数据距离哪个类中心最近
@@ -785,11 +788,8 @@ def computerCentroids(X,idx,K):
785
788
### 2、目标函数
786
789
- 也叫做** 失真代价函数**
787
790
- ![ J({c^{(1)}}, \cdots ,{c^{(m)}},{u_1}, \cdots ,{u_k}) = \frac{1}{m}\sum\limits_ {i = 1}^m {||{x^{(i)}} - {u_ {{c^{(i)}}}}|{|^2}} ] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%7Bc%5E%7B%281%29%7D%7D%2C%20%5Ccdots%20%2C%7Bc%5E%7B%28m%29%7D%7D%2C%7Bu_1%7D%2C%20%5Ccdots%20%2C%7Bu_k%7D%29%20%3D%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%7C%7C%7Bx%5E%7B%28i%29%7D%7D%20-%20%7Bu_%7B%7Bc%5E%7B%28i%29%7D%7D%7D%7D%7C%7B%7C%5E2%7D%7D%20 )
788
- - 最后我们想得到:
789
- ![ \mathop {\min }\limits_ \begin{subarray}{l}
790
- {c^{(1)}}, \cdots ,{c^{(m)}} \\
791
- {u_1}, \cdots ,{u_k}
792
- \end{subarray} J({c^{(1)}}, \cdots ,{c^{(m)}},{u_1}, \cdots ,{u_k})] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Cbegin%7Bsubarray%7D%7Bl%7D%20%0A%20%20%7Bc%5E%7B%281%29%7D%7D%2C%20%5Ccdots%20%2C%7Bc%5E%7B%28m%29%7D%7D%20%5C%5C%20%0A%20%20%7Bu_1%7D%2C%20%5Ccdots%20%2C%7Bu_k%7D%20%0A%5Cend%7Bsubarray%7D%20%20J%28%7Bc%5E%7B%281%29%7D%7D%2C%20%5Ccdots%20%2C%7Bc%5E%7B%28m%29%7D%7D%2C%7Bu_1%7D%2C%20%5Ccdots%20%2C%7Bu_k%7D%29 )
791
+ - 最后我们想得到:
792
+ ![ enter description here] [ 37 ]
793
793
- 其中![ {c^{(i)}}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bc%5E%7B%28i%29%7D%7D ) 表示第` i ` 条数据距离哪个类中心最近,
794
794
- 其中![ {u_i}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bu_i%7D ) 即为聚类的中心
795
795
@@ -813,7 +813,7 @@ def kMeansInitCentroids(X,K):
813
813
- 聚类是不知道y的label的,所以不知道真正的聚类个数
814
814
- 肘部法则(Elbow method)
815
815
- 作代价函数` J ` 和` K ` 的图,若是出现一个拐点,如下图所示,` K ` 就取拐点处的值,下图此时` K=3 `
816
- ![ enter description here] [ 37 ]
816
+ ![ enter description here] [ 38 ]
817
817
- 若是很平滑就不明确,人为选择。
818
818
- 第二种就是人为观察选择
819
819
@@ -858,19 +858,16 @@ def runKMeans(X,initial_centroids,max_iters,plot_process):
858
858
859
859
### 7、运行结果
860
860
- 二维数据类中心的移动
861
- ![ enter description here] [ 38 ]
862
- - 图片压缩
863
861
![ enter description here] [ 39 ]
862
+ - 图片压缩
863
+ ![ enter description here] [ 40 ]
864
864
865
865
866
866
----------------------
867
867
868
868
六、主成分分析(降维)
869
869
870
870
871
-
872
-
873
-
874
871
[ 1 ] : ./images/LinearRegression_01.png " LinearRegression_01.png "
875
872
[ 2 ] : ./images/LogisticRegression_01.png " LogisticRegression_01.png "
876
873
[ 3 ] : ./images/LogisticRegression_02.png " LogisticRegression_02.png "
@@ -907,6 +904,7 @@ def runKMeans(X,initial_centroids,max_iters,plot_process):
907
904
[ 34 ] : ./images/K-Means_01.png " K-Means_01.png "
908
905
[ 35 ] : ./images/K-Means_02.png " K-Means_02.png "
909
906
[ 36 ] : ./images/K-Means_03.png " K-Means_03.png "
910
- [ 37 ] : ./images/K-Means_04.png " K-Means_04.png "
911
- [ 38 ] : ./images/K-Means_05.png " K-Means_05.png "
912
- [ 39 ] : ./images/K-Means_06.png " K-Means_06.png "
907
+ [ 37 ] : ./images/K-Means_07.png " K-Means_07.png "
908
+ [ 38 ] : ./images/K-Means_04.png " K-Means_04.png "
909
+ [ 39 ] : ./images/K-Means_05.png " K-Means_05.png "
910
+ [ 40 ] : ./images/K-Means_06.png " K-Means_06.png "
0 commit comments