Skip to content

Commit fae67e6

Browse files
committed
K-Means
1 parent 034c247 commit fae67e6

File tree

2 files changed

+12
-14
lines changed

2 files changed

+12
-14
lines changed

images/K-Means_07.png

2.21 KB
Loading

readme.md

Lines changed: 12 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -749,6 +749,9 @@ def predict(Theta1,Theta2,X):
749749
![enter description here][35]
750750
- 最后`10`步之后的聚类中心
751751
![enter description here][36]
752+
753+
-
754+
752755
- 计算每条数据到哪个中心最近实现代码:
753756
```
754757
# 找到每条数据距离哪个类中心最近
@@ -785,11 +788,8 @@ def computerCentroids(X,idx,K):
785788
### 2、目标函数
786789
- 也叫做**失真代价函数**
787790
- ![J({c^{(1)}}, \cdots ,{c^{(m)}},{u_1}, \cdots ,{u_k}) = \frac{1}{m}\sum\limits_{i = 1}^m {||{x^{(i)}} - {u_{{c^{(i)}}}}|{|^2}} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%7Bc%5E%7B%281%29%7D%7D%2C%20%5Ccdots%20%2C%7Bc%5E%7B%28m%29%7D%7D%2C%7Bu_1%7D%2C%20%5Ccdots%20%2C%7Bu_k%7D%29%20%3D%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%7C%7C%7Bx%5E%7B%28i%29%7D%7D%20-%20%7Bu_%7B%7Bc%5E%7B%28i%29%7D%7D%7D%7D%7C%7B%7C%5E2%7D%7D%20)
788-
- 最后我们想得到:
789-
![\mathop {\min }\limits_\begin{subarray}{l}
790-
{c^{(1)}}, \cdots ,{c^{(m)}} \\
791-
{u_1}, \cdots ,{u_k}
792-
\end{subarray} J({c^{(1)}}, \cdots ,{c^{(m)}},{u_1}, \cdots ,{u_k})](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Cbegin%7Bsubarray%7D%7Bl%7D%20%0A%20%20%7Bc%5E%7B%281%29%7D%7D%2C%20%5Ccdots%20%2C%7Bc%5E%7B%28m%29%7D%7D%20%5C%5C%20%0A%20%20%7Bu_1%7D%2C%20%5Ccdots%20%2C%7Bu_k%7D%20%0A%5Cend%7Bsubarray%7D%20%20J%28%7Bc%5E%7B%281%29%7D%7D%2C%20%5Ccdots%20%2C%7Bc%5E%7B%28m%29%7D%7D%2C%7Bu_1%7D%2C%20%5Ccdots%20%2C%7Bu_k%7D%29)
791+
- 最后我们想得到:
792+
![enter description here][37]
793793
- 其中![{c^{(i)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bc%5E%7B%28i%29%7D%7D)表示第`i`条数据距离哪个类中心最近,
794794
- 其中![{u_i}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bu_i%7D)即为聚类的中心
795795

@@ -813,7 +813,7 @@ def kMeansInitCentroids(X,K):
813813
- 聚类是不知道y的label的,所以不知道真正的聚类个数
814814
- 肘部法则(Elbow method)
815815
- 作代价函数`J``K`的图,若是出现一个拐点,如下图所示,`K`就取拐点处的值,下图此时`K=3`
816-
![enter description here][37]
816+
![enter description here][38]
817817
- 若是很平滑就不明确,人为选择。
818818
- 第二种就是人为观察选择
819819

@@ -858,19 +858,16 @@ def runKMeans(X,initial_centroids,max_iters,plot_process):
858858

859859
### 7、运行结果
860860
- 二维数据类中心的移动
861-
![enter description here][38]
862-
- 图片压缩
863861
![enter description here][39]
862+
- 图片压缩
863+
![enter description here][40]
864864

865865

866866
----------------------
867867

868868
六、主成分分析(降维)
869869

870870

871-
872-
873-
874871
[1]: ./images/LinearRegression_01.png "LinearRegression_01.png"
875872
[2]: ./images/LogisticRegression_01.png "LogisticRegression_01.png"
876873
[3]: ./images/LogisticRegression_02.png "LogisticRegression_02.png"
@@ -907,6 +904,7 @@ def runKMeans(X,initial_centroids,max_iters,plot_process):
907904
[34]: ./images/K-Means_01.png "K-Means_01.png"
908905
[35]: ./images/K-Means_02.png "K-Means_02.png"
909906
[36]: ./images/K-Means_03.png "K-Means_03.png"
910-
[37]: ./images/K-Means_04.png "K-Means_04.png"
911-
[38]: ./images/K-Means_05.png "K-Means_05.png"
912-
[39]: ./images/K-Means_06.png "K-Means_06.png"
907+
[37]: ./images/K-Means_07.png "K-Means_07.png"
908+
[38]: ./images/K-Means_04.png "K-Means_04.png"
909+
[39]: ./images/K-Means_05.png "K-Means_05.png"
910+
[40]: ./images/K-Means_06.png "K-Means_06.png"

0 commit comments

Comments
 (0)