forked from KarypisLab/METIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmbfactor.c
332 lines (274 loc) · 8 KB
/
smbfactor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
* Copyright 1997, Regents of the University of Minnesota
*
* smbfactor.c
*
* This file performs the symbolic factorization of a matrix
*
* Started 8/1/97
* George
*
* $Id: smbfactor.c 10154 2011-06-09 21:27:35Z karypis $
*
*/
#include "metisbin.h"
/*************************************************************************/
/*! This function sets up data structures for fill-in computations */
/*************************************************************************/
void ComputeFillIn(graph_t *graph, idx_t *perm, idx_t *iperm,
size_t *r_maxlnz, size_t *r_opc)
{
idx_t i, j, k, nvtxs, maxlnz, maxsub;
idx_t *xadj, *adjncy;
idx_t *xlnz, *xnzsub, *nzsub;
size_t opc;
/*
printf("\nSymbolic factorization... --------------------------------------------\n");
*/
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
maxsub = 8*(nvtxs+xadj[nvtxs]);
/* Relabel the vertices so that it starts from 1 */
for (i=0; i<xadj[nvtxs]; i++)
adjncy[i]++;
for (i=0; i<nvtxs+1; i++)
xadj[i]++;
for (i=0; i<nvtxs; i++) {
iperm[i]++;
perm[i]++;
}
/* Allocate the required memory */
xlnz = imalloc(nvtxs+2, "ComputeFillIn: xlnz");
xnzsub = imalloc(nvtxs+2, "ComputeFillIn: xnzsub");
nzsub = imalloc(maxsub+1, "ComputeFillIn: nzsub");
/* Call sparspak's routine. */
if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) {
printf("Realocating nzsub...\n");
gk_free((void **)&nzsub, LTERM);
maxsub *= 2;
nzsub = imalloc(maxsub+1, "ComputeFillIn: nzsub");
if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub))
errexit("MAXSUB is too small!");
}
for (i=0; i<nvtxs; i++)
xlnz[i]--;
for (opc=0, i=0; i<nvtxs; i++)
opc += (xlnz[i+1]-xlnz[i])*(xlnz[i+1]-xlnz[i]) - (xlnz[i+1]-xlnz[i]);
*r_maxlnz = maxlnz;
*r_opc = opc;
gk_free((void **)&xlnz, &xnzsub, &nzsub, LTERM);
/* Relabel the vertices so that it starts from 0 */
for (i=0; i<nvtxs; i++) {
iperm[i]--;
perm[i]--;
}
for (i=0; i<nvtxs+1; i++)
xadj[i]--;
for (i=0; i<xadj[nvtxs]; i++)
adjncy[i]--;
}
/*************************************************************************/
/*!
PURPOSE - THIS ROUTINE PERFORMS SYMBOLIC FACTORIZATION
ON A PERMUTED LINEAR SYSTEM AND IT ALSO SETS UP THE
COMPRESSED DATA STRUCTURE FOR THE SYSTEM.
INPUT PARAMETERS -
NEQNS - NUMBER OF EQUATIONS.
(XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.
(PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE.
UPDATED PARAMETERS -
MAXSUB - SIZE OF THE SUBSCRIPT ARRAY NZSUB. ON RETURN,
IT CONTAINS THE NUMBER OF SUBSCRIPTS USED
OUTPUT PARAMETERS -
XLNZ - INDEX INTO THE NONZERO STORAGE VECTOR LNZ.
(XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT VECTORS.
MAXLNZ - THE NUMBER OF NONZEROS FOUND.
*/
/*************************************************************************/
idx_t smbfct(idx_t neqns, idx_t *xadj, idx_t *adjncy, idx_t *perm, idx_t *invp,
idx_t *xlnz, idx_t *maxlnz, idx_t *xnzsub, idx_t *nzsub,
idx_t *maxsub)
{
/* Local variables */
idx_t node, rchm, mrgk, lmax, i, j, k, m, nabor, nzbeg, nzend;
idx_t kxsub, jstop, jstrt, mrkflg, inz, knz, flag;
idx_t *mrglnk, *marker, *rchlnk;
rchlnk = ismalloc(neqns+1, 0, "smbfct: rchlnk");
marker = ismalloc(neqns+1, 0, "smbfct: marker");
mrglnk = ismalloc(neqns+1, 0, "smbfct: mgrlnk");
/* Parameter adjustments */
--marker;
--mrglnk;
--rchlnk;
--nzsub;
--xnzsub;
--xlnz;
--invp;
--perm;
--adjncy;
--xadj;
/* Function Body */
flag = 0;
nzbeg = 1;
nzend = 0;
xlnz[1] = 1;
/* FOR EACH COLUMN KNZ COUNTS THE NUMBER OF NONZEROS IN COLUMN K ACCUMULATED IN RCHLNK. */
for (k=1; k<=neqns; k++) {
xnzsub[k] = nzend;
node = perm[k];
knz = 0;
mrgk = mrglnk[k];
mrkflg = 0;
marker[k] = k;
if (mrgk != 0) {
assert(mrgk > 0 && mrgk <= neqns);
marker[k] = marker[mrgk];
}
if (xadj[node] >= xadj[node+1]) {
xlnz[k+1] = xlnz[k];
continue;
}
/* USE RCHLNK TO LINK THROUGH THE STRUCTURE OF A(*,K) BELOW DIAGONAL */
assert(k <= neqns && k > 0);
rchlnk[k] = neqns+1;
for (j=xadj[node]; j<xadj[node+1]; j++) {
nabor = invp[adjncy[j]];
if (nabor <= k)
continue;
rchm = k;
do {
m = rchm;
assert(m > 0 && m <= neqns);
rchm = rchlnk[m];
} while (rchm <= nabor);
knz++;
assert(m > 0 && m <= neqns);
rchlnk[m] = nabor;
assert(nabor > 0 && nabor <= neqns);
rchlnk[nabor] = rchm;
assert(k > 0 && k <= neqns);
if (marker[nabor] != marker[k])
mrkflg = 1;
}
/* TEST FOR MASS SYMBOLIC ELIMINATION */
lmax = 0;
assert(mrgk >= 0 && mrgk <= neqns);
if (mrkflg != 0 || mrgk == 0 || mrglnk[mrgk] != 0)
goto L350;
xnzsub[k] = xnzsub[mrgk] + 1;
knz = xlnz[mrgk + 1] - (xlnz[mrgk] + 1);
goto L1400;
L350:
/* LINK THROUGH EACH COLUMN I THAT AFFECTS L(*,K) */
i = k;
assert(i > 0 && i <= neqns);
while ((i = mrglnk[i]) != 0) {
assert(i > 0 && i <= neqns);
inz = xlnz[i+1] - (xlnz[i]+1);
jstrt = xnzsub[i] + 1;
jstop = xnzsub[i] + inz;
if (inz > lmax) {
lmax = inz;
xnzsub[k] = jstrt;
}
/* MERGE STRUCTURE OF L(*,I) IN NZSUB INTO RCHLNK. */
rchm = k;
for (j=jstrt; j<=jstop; j++) {
nabor = nzsub[j];
do {
m = rchm;
assert(m > 0 && m <= neqns);
rchm = rchlnk[m];
} while (rchm < nabor);
if (rchm != nabor) {
knz++;
assert(m > 0 && m <= neqns);
rchlnk[m] = nabor;
assert(nabor > 0 && nabor <= neqns);
rchlnk[nabor] = rchm;
rchm = nabor;
}
}
}
/* CHECK IF SUBSCRIPTS DUPLICATE THOSE OF ANOTHER COLUMN */
if (knz == lmax)
goto L1400;
/* OR IF TAIL OF K-1ST COLUMN MATCHES HEAD OF KTH */
if (nzbeg > nzend)
goto L1200;
assert(k > 0 && k <= neqns);
i = rchlnk[k];
for (jstrt = nzbeg; jstrt <= nzend; ++jstrt) {
if (nzsub[jstrt] < i)
continue;
if (nzsub[jstrt] == i)
goto L1000;
else
goto L1200;
}
goto L1200;
L1000:
xnzsub[k] = jstrt;
for (j = jstrt; j <= nzend; ++j) {
if (nzsub[j] != i)
goto L1200;
assert(i > 0 && i <= neqns);
i = rchlnk[i];
if (i > neqns)
goto L1400;
}
nzend = jstrt - 1;
/* COPY THE STRUCTURE OF L(*,K) FROM RCHLNK TO THE DATA STRUCTURE (XNZSUB, NZSUB) */
L1200:
nzbeg = nzend + 1;
nzend += knz;
if (nzend >= *maxsub) {
flag = 1; /* Out of memory */
break;
}
i = k;
for (j=nzbeg; j<=nzend; j++) {
assert(i > 0 && i <= neqns);
i = rchlnk[i];
nzsub[j] = i;
assert(i > 0 && i <= neqns);
marker[i] = k;
}
xnzsub[k] = nzbeg;
assert(k > 0 && k <= neqns);
marker[k] = k;
/*
* UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND
* IS REQUIRED TO DETERMINE COLUMN L(*,J), WHERE
* L(J,K) IS THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL.
*/
L1400:
if (knz > 1) {
kxsub = xnzsub[k];
i = nzsub[kxsub];
assert(i > 0 && i <= neqns);
assert(k > 0 && k <= neqns);
mrglnk[k] = mrglnk[i];
mrglnk[i] = k;
}
xlnz[k + 1] = xlnz[k] + knz;
}
if (flag == 0) {
*maxlnz = xlnz[neqns] - 1;
*maxsub = xnzsub[neqns];
xnzsub[neqns + 1] = xnzsub[neqns];
}
marker++;
mrglnk++;
rchlnk++;
nzsub++;
xnzsub++;
xlnz++;
invp++;
perm++;
adjncy++;
xadj++;
gk_free((void **)&rchlnk, &mrglnk, &marker, LTERM);
return flag;
}