forked from freebsd/freebsd-src
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradix_ipf.c
1528 lines (1368 loc) · 41.9 KB
/
radix_ipf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2012 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*/
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <net/if.h>
#if !defined(_KERNEL)
# include <stddef.h>
# include <stdlib.h>
# include <strings.h>
# include <string.h>
#endif
#include "netinet/ip_compat.h"
#include "netinet/ip_fil.h"
#ifdef RDX_DEBUG
# include <arpa/inet.h>
# include <stdlib.h>
# include <stdio.h>
#endif
#include "netinet/radix_ipf.h"
#define ADF_OFF offsetof(addrfamily_t, adf_addr)
#define ADF_OFF_BITS (ADF_OFF << 3)
static ipf_rdx_node_t *ipf_rx_insert __P((ipf_rdx_head_t *,
ipf_rdx_node_t nodes[2], int *));
static void ipf_rx_attach_mask __P((ipf_rdx_node_t *, ipf_rdx_mask_t *));
static int count_mask_bits __P((addrfamily_t *, u_32_t **));
static void buildnodes __P((addrfamily_t *, addrfamily_t *,
ipf_rdx_node_t n[2]));
static ipf_rdx_node_t *ipf_rx_find_addr __P((ipf_rdx_node_t *, u_32_t *));
static ipf_rdx_node_t *ipf_rx_lookup __P((ipf_rdx_head_t *, addrfamily_t *,
addrfamily_t *));
static ipf_rdx_node_t *ipf_rx_match __P((ipf_rdx_head_t *, addrfamily_t *));
/*
* Foreword.
* ---------
* The code in this file has been written to target using the addrfamily_t
* data structure to house the address information and no other. Thus there
* are certain aspects of thise code (such as offsets to the address itself)
* that are hard coded here whilst they might be more variable elsewhere.
* Similarly, this code enforces no maximum key length as that's implied by
* all keys needing to be stored in addrfamily_t.
*/
/* ------------------------------------------------------------------------ */
/* Function: count_mask_bits */
/* Returns: number of consecutive bits starting at "mask". */
/* */
/* Count the number of bits set in the address section of addrfamily_t and */
/* return both that number and a pointer to the last word with a bit set if */
/* lastp is not NULL. The bit count is performed using network byte order */
/* as the guide for which bit is the most significant bit. */
/* ------------------------------------------------------------------------ */
static int
count_mask_bits(mask, lastp)
addrfamily_t *mask;
u_32_t **lastp;
{
u_32_t *mp = (u_32_t *)&mask->adf_addr;
u_32_t m;
int count = 0;
int mlen;
mlen = mask->adf_len - offsetof(addrfamily_t, adf_addr);
for (; mlen > 0; mlen -= 4, mp++) {
if ((m = ntohl(*mp)) == 0)
break;
if (lastp != NULL)
*lastp = mp;
for (; m & 0x80000000; m <<= 1)
count++;
}
return count;
}
/* ------------------------------------------------------------------------ */
/* Function: buildnodes */
/* Returns: Nil */
/* Parameters: addr(I) - network address for this radix node */
/* mask(I) - netmask associated with the above address */
/* nodes(O) - pair of ipf_rdx_node_t's to initialise with data */
/* associated with addr and mask. */
/* */
/* Initialise the fields in a pair of radix tree nodes according to the */
/* data supplied in the paramters "addr" and "mask". It is expected that */
/* "mask" will contain a consecutive string of bits set. Masks with gaps in */
/* the middle are not handled by this implementation. */
/* ------------------------------------------------------------------------ */
static void
buildnodes(addr, mask, nodes)
addrfamily_t *addr, *mask;
ipf_rdx_node_t nodes[2];
{
u_32_t maskbits;
u_32_t lastbits;
u_32_t lastmask;
u_32_t *last;
int masklen;
last = NULL;
maskbits = count_mask_bits(mask, &last);
if (last == NULL) {
masklen = 0;
lastmask = 0;
} else {
masklen = last - (u_32_t *)mask;
lastmask = *last;
}
lastbits = maskbits & 0x1f;
bzero(&nodes[0], sizeof(ipf_rdx_node_t) * 2);
nodes[0].maskbitcount = maskbits;
nodes[0].index = -1 - (ADF_OFF_BITS + maskbits);
nodes[0].addrkey = (u_32_t *)addr;
nodes[0].maskkey = (u_32_t *)mask;
nodes[0].addroff = nodes[0].addrkey + masklen;
nodes[0].maskoff = nodes[0].maskkey + masklen;
nodes[0].parent = &nodes[1];
nodes[0].offset = masklen;
nodes[0].lastmask = lastmask;
nodes[1].offset = masklen;
nodes[1].left = &nodes[0];
nodes[1].maskbitcount = maskbits;
#ifdef RDX_DEBUG
(void) strcpy(nodes[0].name, "_BUILD.0");
(void) strcpy(nodes[1].name, "_BUILD.1");
#endif
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_find_addr */
/* Returns: ipf_rdx_node_t * - pointer to a node in the radix tree. */
/* Parameters: tree(I) - pointer to first right node in tree to search */
/* addr(I) - pointer to address to match */
/* */
/* Walk the radix tree given by "tree", looking for a leaf node that is a */
/* match for the address given by "addr". */
/* ------------------------------------------------------------------------ */
static ipf_rdx_node_t *
ipf_rx_find_addr(tree, addr)
ipf_rdx_node_t *tree;
u_32_t *addr;
{
ipf_rdx_node_t *cur;
for (cur = tree; cur->index >= 0;) {
if (cur->bitmask & addr[cur->offset]) {
cur = cur->right;
} else {
cur = cur->left;
}
}
return (cur);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_match */
/* Returns: ipf_rdx_node_t * - NULL on error, else pointer to the node */
/* added to the tree. */
/* Paramters: head(I) - pointer to tree head to search */
/* addr(I) - pointer to address to find */
/* */
/* Search the radix tree for the best match to the address pointed to by */
/* "addr" and return a pointer to that node. This search will not match the */
/* address information stored in either of the root leaves as neither of */
/* them are considered to be part of the tree of data being stored. */
/* ------------------------------------------------------------------------ */
static ipf_rdx_node_t *
ipf_rx_match(head, addr)
ipf_rdx_head_t *head;
addrfamily_t *addr;
{
ipf_rdx_mask_t *masknode;
ipf_rdx_node_t *prev;
ipf_rdx_node_t *node;
ipf_rdx_node_t *cur;
u_32_t *data;
u_32_t *mask;
u_32_t *key;
u_32_t *end;
int len;
int i;
len = addr->adf_len;
end = (u_32_t *)((u_char *)addr + len);
node = ipf_rx_find_addr(head->root, (u_32_t *)addr);
/*
* Search the dupkey list for a potential match.
*/
for (cur = node; (cur != NULL) && (cur->root == 0); cur = cur->dupkey) {
i = cur[0].addroff - cur[0].addrkey;
data = cur[0].addrkey + i;
mask = cur[0].maskkey + i;
key = (u_32_t *)addr + i;
for (; key < end; data++, key++, mask++)
if ((*key & *mask) != *data)
break;
if ((end == key) && (cur->root == 0))
return (cur); /* Equal keys */
}
prev = node->parent;
key = (u_32_t *)addr;
for (node = prev; node->root == 0; node = node->parent) {
/*
* We know that the node hasn't matched so therefore only
* the entries in the mask list are searched, not the top
* node nor the dupkey list.
*/
masknode = node->masks;
for (; masknode != NULL; masknode = masknode->next) {
if (masknode->maskbitcount > node->maskbitcount)
continue;
cur = masknode->node;
for (i = ADF_OFF >> 2; i <= node->offset; i++) {
if ((key[i] & masknode->mask[i]) ==
cur->addrkey[i])
return (cur);
}
}
}
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_lookup */
/* Returns: ipf_rdx_node_t * - NULL on error, else pointer to the node */
/* added to the tree. */
/* Paramters: head(I) - pointer to tree head to search */
/* addr(I) - address part of the key to match */
/* mask(I) - netmask part of the key to match */
/* */
/* ipf_rx_lookup searches for an exact match on (addr,mask). The intention */
/* is to see if a given key is in the tree, not to see if a route exists. */
/* ------------------------------------------------------------------------ */
ipf_rdx_node_t *
ipf_rx_lookup(head, addr, mask)
ipf_rdx_head_t *head;
addrfamily_t *addr, *mask;
{
ipf_rdx_node_t *found;
ipf_rdx_node_t *node;
u_32_t *akey;
int count;
found = ipf_rx_find_addr(head->root, (u_32_t *)addr);
if (found->root == 1)
return NULL;
/*
* It is possible to find a matching address in the tree but for the
* netmask to not match. If the netmask does not match and there is
* no list of alternatives present at dupkey, return a failure.
*/
count = count_mask_bits(mask, NULL);
if (count != found->maskbitcount && found->dupkey == NULL)
return (NULL);
akey = (u_32_t *)addr;
if ((found->addrkey[found->offset] & found->maskkey[found->offset]) !=
akey[found->offset])
return NULL;
if (found->dupkey != NULL) {
node = found;
while (node != NULL && node->maskbitcount != count)
node = node->dupkey;
if (node == NULL)
return (NULL);
found = node;
}
return found;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_attach_mask */
/* Returns: Nil */
/* Parameters: node(I) - pointer to a radix tree node */
/* mask(I) - pointer to mask structure to add */
/* */
/* Add the netmask to the given node in an ordering where the most specific */
/* netmask is at the top of the list. */
/* ------------------------------------------------------------------------ */
static void
ipf_rx_attach_mask(node, mask)
ipf_rdx_node_t *node;
ipf_rdx_mask_t *mask;
{
ipf_rdx_mask_t **pm;
ipf_rdx_mask_t *m;
for (pm = &node->masks; (m = *pm) != NULL; pm = &m->next)
if (m->maskbitcount < mask->maskbitcount)
break;
mask->next = *pm;
*pm = mask;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_insert */
/* Returns: ipf_rdx_node_t * - NULL on error, else pointer to the node */
/* added to the tree. */
/* Paramters: head(I) - pointer to tree head to add nodes to */
/* nodes(I) - pointer to radix nodes to be added */
/* dup(O) - set to 1 if node is a duplicate, else 0. */
/* */
/* Add the new radix tree entry that owns nodes[] to the tree given by head.*/
/* If there is already a matching key in the table, "dup" will be set to 1 */
/* and the existing node pointer returned if there is a complete key match. */
/* A complete key match is a matching of all key data that is presented by */
/* by the netmask. */
/* ------------------------------------------------------------------------ */
static ipf_rdx_node_t *
ipf_rx_insert(head, nodes, dup)
ipf_rdx_head_t *head;
ipf_rdx_node_t nodes[2];
int *dup;
{
ipf_rdx_mask_t **pmask;
ipf_rdx_node_t *node;
ipf_rdx_node_t *prev;
ipf_rdx_mask_t *mask;
ipf_rdx_node_t *cur;
u_32_t nodemask;
u_32_t *addr;
u_32_t *data;
int nodebits;
u_32_t *key;
u_32_t *end;
u_32_t bits;
int nodekey;
int nodeoff;
int nlen;
int len;
addr = nodes[0].addrkey;
node = ipf_rx_find_addr(head->root, addr);
len = ((addrfamily_t *)addr)->adf_len;
key = (u_32_t *)&((addrfamily_t *)addr)->adf_addr;
data= (u_32_t *)&((addrfamily_t *)node->addrkey)->adf_addr;
end = (u_32_t *)((u_char *)addr + len);
for (nlen = 0; key < end; data++, key++, nlen += 32)
if (*key != *data)
break;
if (end == data) {
*dup = 1;
return (node); /* Equal keys */
}
*dup = 0;
bits = (ntohl(*data) ^ ntohl(*key));
for (; bits != 0; nlen++) {
if ((bits & 0x80000000) != 0)
break;
bits <<= 1;
}
nlen += ADF_OFF_BITS;
nodes[1].index = nlen;
nodes[1].bitmask = htonl(0x80000000 >> (nlen & 0x1f));
nodes[0].offset = nlen / 32;
nodes[1].offset = nlen / 32;
/*
* Walk through the tree and look for the correct place to attach
* this node. ipf_rx_fin_addr is not used here because the place
* to attach this node may be an internal node (same key, different
* netmask.) Additionally, the depth of the search is forcibly limited
* here to not exceed the netmask, so that a short netmask will be
* added higher up the tree even if there are lower branches.
*/
cur = head->root;
key = nodes[0].addrkey;
do {
prev = cur;
if (key[cur->offset] & cur->bitmask) {
cur = cur->right;
} else {
cur = cur->left;
}
} while (nlen > (unsigned)cur->index);
if ((key[prev->offset] & prev->bitmask) == 0) {
prev->left = &nodes[1];
} else {
prev->right = &nodes[1];
}
cur->parent = &nodes[1];
nodes[1].parent = prev;
if ((key[nodes[1].offset] & nodes[1].bitmask) == 0) {
nodes[1].right = cur;
} else {
nodes[1].right = &nodes[0];
nodes[1].left = cur;
}
nodeoff = nodes[0].offset;
nodekey = nodes[0].addrkey[nodeoff];
nodemask = nodes[0].lastmask;
nodebits = nodes[0].maskbitcount;
prev = NULL;
/*
* Find the node up the tree with the largest pattern that still
* matches the node being inserted to see if this mask can be
* moved there.
*/
for (cur = nodes[1].parent; cur->root == 0; cur = cur->parent) {
if (cur->maskbitcount <= nodebits)
break;
if (((cur - 1)->addrkey[nodeoff] & nodemask) != nodekey)
break;
prev = cur;
}
KMALLOC(mask, ipf_rdx_mask_t *);
if (mask == NULL)
return NULL;
bzero(mask, sizeof(*mask));
mask->next = NULL;
mask->node = &nodes[0];
mask->maskbitcount = nodebits;
mask->mask = nodes[0].maskkey;
nodes[0].mymask = mask;
if (prev != NULL) {
ipf_rdx_mask_t *m;
for (pmask = &prev->masks; (m = *pmask) != NULL;
pmask = &m->next) {
if (m->maskbitcount < nodebits)
break;
}
} else {
/*
* No higher up nodes qualify, so attach mask locally.
*/
pmask = &nodes[0].masks;
}
mask->next = *pmask;
*pmask = mask;
/*
* Search the mask list on each child to see if there are any masks
* there that can be moved up to this newly inserted node.
*/
cur = nodes[1].right;
if (cur->root == 0) {
for (pmask = &cur->masks; (mask = *pmask) != NULL; ) {
if (mask->maskbitcount < nodebits) {
*pmask = mask->next;
ipf_rx_attach_mask(&nodes[0], mask);
} else {
pmask = &mask->next;
}
}
}
cur = nodes[1].left;
if (cur->root == 0 && cur != &nodes[0]) {
for (pmask = &cur->masks; (mask = *pmask) != NULL; ) {
if (mask->maskbitcount < nodebits) {
*pmask = mask->next;
ipf_rx_attach_mask(&nodes[0], mask);
} else {
pmask = &mask->next;
}
}
}
return (&nodes[0]);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_addroute */
/* Returns: ipf_rdx_node_t * - NULL on error, else pointer to the node */
/* added to the tree. */
/* Paramters: head(I) - pointer to tree head to search */
/* addr(I) - address portion of "route" to add */
/* mask(I) - netmask portion of "route" to add */
/* nodes(I) - radix tree data nodes inside allocate structure */
/* */
/* Attempt to add a node to the radix tree. The key for the node is the */
/* (addr,mask). No memory allocation for the radix nodes themselves is */
/* performed here, the data structure that this radix node is being used to */
/* find is expected to house the node data itself however the call to */
/* ipf_rx_insert() will attempt to allocate memory in order for netmask to */
/* be promoted further up the tree. */
/* In this case, the ip_pool_node_t structure from ip_pool.h contains both */
/* the key material (addr,mask) and the radix tree nodes[]. */
/* */
/* The mechanics of inserting the node into the tree is handled by the */
/* function ipf_rx_insert() above. Here, the code deals with the case */
/* where the data to be inserted is a duplicate. */
/* ------------------------------------------------------------------------ */
ipf_rdx_node_t *
ipf_rx_addroute(head, addr, mask, nodes)
ipf_rdx_head_t *head;
addrfamily_t *addr, *mask;
ipf_rdx_node_t *nodes;
{
ipf_rdx_node_t *node;
ipf_rdx_node_t *prev;
ipf_rdx_node_t *x;
int dup;
buildnodes(addr, mask, nodes);
x = ipf_rx_insert(head, nodes, &dup);
if (x == NULL)
return NULL;
if (dup == 1) {
node = &nodes[0];
prev = NULL;
/*
* The duplicate list is kept sorted with the longest
* mask at the top, meaning that the most specific entry
* in the listis found first. This list thus allows for
* duplicates such as 128.128.0.0/32 and 128.128.0.0/16.
*/
while ((x != NULL) && (x->maskbitcount > node->maskbitcount)) {
prev = x;
x = x->dupkey;
}
/*
* Is it a complete duplicate? If so, return NULL and
* fail the insert. Otherwise, insert it into the list
* of netmasks active for this key.
*/
if ((x != NULL) && (x->maskbitcount == node->maskbitcount))
return (NULL);
if (prev != NULL) {
nodes[0].dupkey = x;
prev->dupkey = &nodes[0];
nodes[0].parent = prev;
if (x != NULL)
x->parent = &nodes[0];
} else {
nodes[0].dupkey = x->dupkey;
prev = x->parent;
nodes[0].parent = prev;
x->parent = &nodes[0];
if (prev->left == x)
prev->left = &nodes[0];
else
prev->right = &nodes[0];
}
}
return &nodes[0];
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_delete */
/* Returns: ipf_rdx_node_t * - NULL on error, else node removed from */
/* the tree. */
/* Paramters: head(I) - pointer to tree head to search */
/* addr(I) - pointer to the address part of the key */
/* mask(I) - pointer to the netmask part of the key */
/* */
/* Search for an entry in the radix tree that is an exact match for (addr, */
/* mask) and remove it if it exists. In the case where (addr,mask) is a not */
/* a unique key, the tree structure itself is not changed - only the list */
/* of duplicate keys. */
/* ------------------------------------------------------------------------ */
ipf_rdx_node_t *
ipf_rx_delete(head, addr, mask)
ipf_rdx_head_t *head;
addrfamily_t *addr, *mask;
{
ipf_rdx_mask_t **pmask;
ipf_rdx_node_t *parent;
ipf_rdx_node_t *found;
ipf_rdx_node_t *prev;
ipf_rdx_node_t *node;
ipf_rdx_node_t *cur;
ipf_rdx_mask_t *m;
int count;
found = ipf_rx_find_addr(head->root, (u_32_t *)addr);
if (found == NULL)
return NULL;
if (found->root == 1)
return NULL;
count = count_mask_bits(mask, NULL);
parent = found->parent;
if (found->dupkey != NULL) {
node = found;
while (node != NULL && node->maskbitcount != count)
node = node->dupkey;
if (node == NULL)
return (NULL);
if (node != found) {
/*
* Remove from the dupkey list. Here, "parent" is
* the previous node on the list (rather than tree)
* and "dupkey" is the next node on the list.
*/
parent = node->parent;
parent->dupkey = node->dupkey;
node->dupkey->parent = parent;
} else {
/*
*
* When removing the top node of the dupkey list,
* the pointers at the top of the list that point
* to other tree nodes need to be preserved and
* any children must have their parent updated.
*/
node = node->dupkey;
node->parent = found->parent;
node->right = found->right;
node->left = found->left;
found->right->parent = node;
found->left->parent = node;
if (parent->left == found)
parent->left = node;
else
parent->right= node;
}
} else {
if (count != found->maskbitcount)
return (NULL);
/*
* Remove the node from the tree and reconnect the subtree
* below.
*/
/*
* If there is a tree to the left, look for something to
* attach in place of "found".
*/
prev = found + 1;
cur = parent->parent;
if (parent != found + 1) {
if ((found + 1)->parent->right == found + 1)
(found + 1)->parent->right = parent;
else
(found + 1)->parent->left = parent;
if (cur->right == parent) {
if (parent->left == found) {
cur->right = parent->right;
} else if (parent->left != parent - 1) {
cur->right = parent->left;
} else {
cur->right = parent - 1;
}
cur->right->parent = cur;
} else {
if (parent->right == found) {
cur->left = parent->left;
} else if (parent->right != parent - 1) {
cur->left = parent->right;
} else {
cur->left = parent - 1;
}
cur->left->parent = cur;
}
parent->left = (found + 1)->left;
if ((found + 1)->right != parent)
parent->right = (found + 1)->right;
parent->left->parent = parent;
parent->right->parent = parent;
parent->parent = (found + 1)->parent;
parent->bitmask = prev->bitmask;
parent->offset = prev->offset;
parent->index = prev->index;
} else {
/*
* We found an edge node.
*/
cur = parent->parent;
if (cur->left == parent) {
if (parent->left == found) {
cur->left = parent->right;
parent->right->parent = cur;
} else {
cur->left = parent->left;
parent->left->parent = cur;
}
} else {
if (parent->right != found) {
cur->right = parent->right;
parent->right->parent = cur;
} else {
cur->right = parent->left;
prev->left->parent = cur;
}
}
}
}
/*
* Remove mask associated with this node.
*/
for (cur = parent; cur->root == 0; cur = cur->parent) {
ipf_rdx_mask_t **pm;
if (cur->maskbitcount <= found->maskbitcount)
break;
if (((cur - 1)->addrkey[found->offset] & found->bitmask) !=
found->addrkey[found->offset])
break;
for (pm = &cur->masks; (m = *pm) != NULL; )
if (m->node == cur) {
*pm = m->next;
break;
} else {
pm = &m->next;
}
}
KFREE(found->mymask);
/*
* Masks that have been brought up to this node from below need to
* be sent back down.
*/
for (pmask = &parent->masks; (m = *pmask) != NULL; ) {
*pmask = m->next;
cur = m->node;
if (cur == found)
continue;
if (found->addrkey[cur->offset] & cur->lastmask) {
ipf_rx_attach_mask(parent->right, m);
} else if (parent->left != found) {
ipf_rx_attach_mask(parent->left, m);
}
}
return (found);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_walktree */
/* Returns: Nil */
/* Paramters: head(I) - pointer to tree head to search */
/* walker(I) - function to call for each node in the tree */
/* arg(I) - parameter to pass to walker, in addition to the */
/* node pointer */
/* */
/* A standard tree walking function except that it is iterative, rather */
/* than recursive and tracks the next node in case the "walker" function */
/* should happen to delete and free the current node. It thus goes without */
/* saying that the "walker" function is not permitted to cause any change */
/* in the validity of the data found at either the left or right child. */
/* ------------------------------------------------------------------------ */
void
ipf_rx_walktree(head, walker, arg)
ipf_rdx_head_t *head;
radix_walk_func_t walker;
void *arg;
{
ipf_rdx_node_t *next;
ipf_rdx_node_t *node = head->root;
ipf_rdx_node_t *base;
while (node->index >= 0)
node = node->left;
for (;;) {
base = node;
while ((node->parent->right == node) && (node->root == 0))
node = node->parent;
for (node = node->parent->right; node->index >= 0; )
node = node->left;
next = node;
for (node = base; node != NULL; node = base) {
base = node->dupkey;
if (node->root == 0)
walker(node, arg);
}
node = next;
if (node->root)
return;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_inithead */
/* Returns: int - 0 = success, else failure */
/* Paramters: softr(I) - pointer to radix context */
/* headp(O) - location for where to store allocated tree head */
/* */
/* This function allocates and initialises a radix tree head structure. */
/* As a traditional radix tree, node 0 is used as the "0" sentinel and node */
/* "2" is used as the all ones sentinel, leaving node "1" as the root from */
/* which the tree is hung with node "0" on its left and node "2" to the */
/* right. The context, "softr", is used here to provide a common source of */
/* the zeroes and ones data rather than have one per head. */
/* ------------------------------------------------------------------------ */
int
ipf_rx_inithead(softr, headp)
radix_softc_t *softr;
ipf_rdx_head_t **headp;
{
ipf_rdx_head_t *ptr;
ipf_rdx_node_t *node;
KMALLOC(ptr, ipf_rdx_head_t *);
*headp = ptr;
if (ptr == NULL)
return -1;
bzero(ptr, sizeof(*ptr));
node = ptr->nodes;
ptr->root = node + 1;
node[0].index = ADF_OFF_BITS;
node[0].index = -1 - node[0].index;
node[1].index = ADF_OFF_BITS;
node[2].index = node[0].index;
node[0].parent = node + 1;
node[1].parent = node + 1;
node[2].parent = node + 1;
node[1].bitmask = htonl(0x80000000);
node[0].root = 1;
node[1].root = 1;
node[2].root = 1;
node[0].offset = ADF_OFF_BITS >> 5;
node[1].offset = ADF_OFF_BITS >> 5;
node[2].offset = ADF_OFF_BITS >> 5;
node[1].left = &node[0];
node[1].right = &node[2];
node[0].addrkey = (u_32_t *)softr->zeros;
node[2].addrkey = (u_32_t *)softr->ones;
#ifdef RDX_DEBUG
(void) strcpy(node[0].name, "0_ROOT");
(void) strcpy(node[1].name, "1_ROOT");
(void) strcpy(node[2].name, "2_ROOT");
#endif
ptr->addaddr = ipf_rx_addroute;
ptr->deladdr = ipf_rx_delete;
ptr->lookup = ipf_rx_lookup;
ptr->matchaddr = ipf_rx_match;
ptr->walktree = ipf_rx_walktree;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_freehead */
/* Returns: Nil */
/* Paramters: head(I) - pointer to tree head to free */
/* */
/* This function simply free's up the radix tree head. Prior to calling */
/* this function, it is expected that the tree will have been emptied. */
/* ------------------------------------------------------------------------ */
void
ipf_rx_freehead(head)
ipf_rdx_head_t *head;
{
KFREE(head);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_create */
/* Parameters: Nil */
/* */
/* ------------------------------------------------------------------------ */
void *
ipf_rx_create()
{
radix_softc_t *softr;
KMALLOC(softr, radix_softc_t *);
if (softr == NULL)
return NULL;
bzero((char *)softr, sizeof(*softr));
KMALLOCS(softr->zeros, u_char *, 3 * sizeof(addrfamily_t));
if (softr->zeros == NULL) {
KFREE(softr);
return (NULL);
}
softr->ones = softr->zeros + sizeof(addrfamily_t);
return softr;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_init */
/* Returns: int - 0 = success (always) */
/* */
/* ------------------------------------------------------------------------ */
int
ipf_rx_init(ctx)
void *ctx;
{
radix_softc_t *softr = ctx;
memset(softr->zeros, 0, 3 * sizeof(addrfamily_t));
memset(softr->ones, 0xff, sizeof(addrfamily_t));
return (0);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rx_destroy */
/* Returns: Nil */
/* */
/* ------------------------------------------------------------------------ */
void
ipf_rx_destroy(ctx)
void *ctx;
{
radix_softc_t *softr = ctx;
if (softr->zeros != NULL)
KFREES(softr->zeros, 3 * sizeof(addrfamily_t));
KFREE(softr);
}
/* ====================================================================== */
#ifdef RDX_DEBUG
/*
* To compile this file as a standalone test unit, use -DRDX_DEBUG=1
*/
#define NAME(x) ((x)->index < 0 ? (x)->name : (x)->name)
#define GNAME(y) ((y) == NULL ? "NULL" : NAME(y))
typedef struct myst {
struct ipf_rdx_node nodes[2];
addrfamily_t dst;
addrfamily_t mask;
struct myst *next;
int printed;
} myst_t;
typedef struct tabe_s {
char *host;
char *mask;
char *what;
} tabe_t;
tabe_t builtin[] = {
#if 1
{ "192:168:100::0", "48", "d" },
{ "192:168:100::2", "128", "d" },
#else
{ "127.192.0.0", "255.255.255.0", "d" },
{ "127.128.0.0", "255.255.255.0", "d" },
{ "127.96.0.0", "255.255.255.0", "d" },
{ "127.80.0.0", "255.255.255.0", "d" },
{ "127.72.0.0", "255.255.255.0", "d" },
{ "127.64.0.0", "255.255.255.0", "d" },
{ "127.56.0.0", "255.255.255.0", "d" },
{ "127.48.0.0", "255.255.255.0", "d" },
{ "127.40.0.0", "255.255.255.0", "d" },
{ "127.32.0.0", "255.255.255.0", "d" },
{ "127.24.0.0", "255.255.255.0", "d" },
{ "127.16.0.0", "255.255.255.0", "d" },
{ "127.8.0.0", "255.255.255.0", "d" },
{ "124.0.0.0", "255.0.0.0", "d" },
{ "125.0.0.0", "255.0.0.0", "d" },
{ "126.0.0.0", "255.0.0.0", "d" },
{ "127.0.0.0", "255.0.0.0", "d" },
{ "10.0.0.0", "255.0.0.0", "d" },
{ "128.250.0.0", "255.255.0.0", "d" },
{ "192.168.0.0", "255.255.0.0", "d" },
{ "192.168.1.0", "255.255.255.0", "d" },
#endif
{ NULL, NULL, NULL }
};
char *mtable[][1] = {
#if 1
{ "192:168:100::2" },
{ "192:168:101::2" },
#else
{ "9.0.0.0" },
{ "9.0.0.1" },
{ "11.0.0.0" },
{ "11.0.0.1" },
{ "127.0.0.1" },
{ "127.0.1.0" },
{ "255.255.255.0" },