forked from lintool/UMD-courses
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsyllabus.html
497 lines (320 loc) · 18.3 KB
/
syllabus.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Big Data Infrastructure</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="">
<meta name="author" content="">
<!-- Le styles -->
<link href="assets/css/bootstrap.css" rel="stylesheet">
<style>
body {
padding-top: 60px; /* 60px to make the container go all the way to the bottom of the topbar */
}
</style>
<link href="assets/css/bootstrap-responsive.css" rel="stylesheet">
<!-- HTML5 shim, for IE6-8 support of HTML5 elements -->
<!--[if lt IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<!-- Fav and touch icons -->
<!--link rel="apple-touch-icon-precomposed" sizes="144x144" href="assets/ico/apple-touch-icon-144-precomposed.png">
<link rel="apple-touch-icon-precomposed" sizes="114x114" href="assets/ico/apple-touch-icon-114-precomposed.png">
<link rel="apple-touch-icon-precomposed" sizes="72x72" href="assets/ico/apple-touch-icon-72-precomposed.png">
<link rel="apple-touch-icon-precomposed" href="assets/ico/apple-touch-icon-57-precomposed.png">
<link rel="shortcut icon" href="assets/ico/favicon.png"-->
</head>
<body>
<div class="navbar navbar-inverse navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<a class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</a>
<div class="nav-collapse collapse">
<ul class="nav">
<li><a href="index.html">Home</a></li>
<li><a href="overview.html">Overview</a></li>
<li class="active"><a href="syllabus.html">Syllabus</a></li>
<li><a href="assignments.html">Assignments</a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="container">
<div class="page-header">
<h1>Syllabus <small>Big Data Infrastructure (Spring 2015)</small></h1>
</div>
<section id="schedule">
<div>
<h3>Schedule of Classes</h3>
<table class="table table-striped table-condensed">
<thead>
<tr><td><b>Session</b></td>
<td><b>Date</b></td>
<td><b>Topic</b></td>
<td><b>Assignment due</b></td></tr>
</thead>
<tbody>
<tr><td>1</td><td>January 26</td><td><a href="#session1">Introduction</a></td><td><a href="assignments.html#assignment0">Assignment #0: Prelude</a></td></tr>
<tr><td>2</td><td>February 2</td><td><a href="#session2">From Business Intelligence to Data Science</a></td><td><a href="assignments.html#assignment1">Assignment #1: Warmup</a></td></tr>
<tr><td>3</td><td>February 9</td><td><a href="#session3">MapReduce — Basic Algorithm Design</a></td><td></td></tr>
<tr><td></td><td>February 16</td><td>Canceled due to snowstorm</td><td></td></tr>
<tr><td>4</td><td>February 23</td><td><a href="#session4">MapReduce — Structured and Unstructured Data</a></td><td><a href="assignments.html#assignment2">Assignment #2: Counting</a></td></tr>
<tr><td>5</td><td>March 2</td><td><a href="#session5">MapReduce — Graphs</a></td><td><a href="assignments.html#assignment3">Assignment #3: Inverted Indexing</a></td></tr>
<tr><td>6</td><td>March 9</td><td><a href="#session6">MapReduce — Data Mining</a></td><td></td></tr>
<tr><td colspan="4">Spring Break</td></tr>
<tr><td>7</td><td>March 23</td><td><a href="#session7">Extending MapReduce</a></td><td><a href="assignments.html#assignment4">Assignment #4: Graphs</a></td></tr>
<tr><td>8</td><td>March 30</td><td><a href="#session8">NoSQL</a></td><td></td></tr>
<tr><td>9</td><td>April 6</td><td><a href="#session9">Beyond MapReduce — Dataflow Languages</a></td><td><a href="assignments.html#assignment5">Assignment #5: HBase</a></td></tr>
<tr><td>10</td><td>April 13</td><td><a href="#session10">Beyond MapReduce — Graph Processing</a></td><td><a href="assignments.html#assignment6">Assignment #6: Project Proposal</a></td></td></tr>
<tr><td>11</td><td>April 20</td><td><a href="#session11">Beyond MapReduce — Stream Processing</a></td><td><a href="assignments.html#assignment7">Assignment #7: Data Analytics</a></td></tr>
<tr><td>12</td><td>April 27</td><td>Production Considerations</td><td></td></tr>
<tr><td>13</td><td>May 4</td><td>Project Work</td><td></tr>
<tr><td>14</td><td>May 11</td><td>Project Presentations</td>
<td><a href="assignments.html#finalproject">Final Project</a></td></tr>
</tbody>
</table>
</div>
</section>
<section id="session1" style="padding-top:35px">
<div>
<h3>Session 1: Introduction <small>January 26</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li><a href="http://lintool.github.com/MapReduceAlgorithms/ed1n/MapReduce-algorithms.pdf">Data-Intensive Text Processing with MapReduce</a>
<ul>
<li>Chapter 1: Introduction</li>
<li>Chapter 2: MapReduce Basics</li>
</ul>
</li>
<li>Ghemawat et al. (2003) <a href="content/Ghemawat_etal_SOSP2003.pdf">The Google File System.</a> SOSP.</li>
<li>Dean and Ghemawat. (2004) <a href="content/Dean_Ghemawat_OSDI2004.pdf">MapReduce: Simplified Data Processing on Large Clusters.</a> OSDI.</li>
<li>Barroso et al. (2013) <a href="content/Barroso_etal_2013.pdf">The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines (Second Edition).</a> Morgan & Claypool. (Read at least Chapters 1 and 2, but then read as much of it as you can; at least flip through the remaining chapters.)</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session01.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session01.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session2" style="padding-top:35px">
<div>
<h3>Session 2: From Business Intelligence to Data Science <small>February 2</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li>Chaudhuri and Dayal. (1997) <a href="content/Chaudhuri_Daya_1997.pdf">An Overview of Data Warehousing and OLAP Technology.</a> ACM SIGMOD Record, 26(1):65-74.</li>
<li>Hammerbacher. (2009) <a href="content/Hammerbacher_2009.pdf">Information Platforms and the Rise of the Data Scientist.</a> In Beautiful Data: The Stories Behind Elegant Data Solutions. O'Reilly.</li>
<li>Halevy et al. (2009) <a href="content/Halevy_etal_2009.pdf">The Unreasonable Effectiveness of Data.</a> IEEE Intelligent Systems, 24(2):8-12</li>
<li>Lin and Ryaboy. (2012) <a href="content/Lin_Ryaboy_2012.pdf">Scaling Big Data Mining Infrastructure: The Twitter Experience.</a> SIGKDD Explorations, 14(2):6-19, 2012.</li>
<li>Hadoop: The Definitive Guide (3rd Edition):
<ul>
<li>Chapter 1: Meet Hadoop</li>
<li>Chapter 2: MapReduce (Skip sections on "Hadoop Streaming" and "Hadoop Pipes".)</li>
<li>Chapter 3: The Hadoop Distributed File System (Focus on the mechanics of the HDFS commands and don't worry so much about learning the Java API all at once—you'll pick it up in time. Stop when you get to the section on "Data Ingest with Flume and Sqoop".)</li>
</ul>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session02.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session02.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session3" style="padding-top:35px">
<div>
<h3>Session 3: MapReduce — Basic Algorithm Design <small>February 9</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li><a href="http://lintool.github.com/MapReduceAlgorithms/ed1n/MapReduce-algorithms.pdf">Data-Intensive Text Processing with MapReduce</a>
<ul>
<li>Chapter 3: MapReduce Algorithm Design</li>
</ul>
</li>
<li>Ullman. (2012) <a href="content/Ullman_2012.pdf">Designing Good Mapreduce Algorithms.</a> <i>Crossroads</i>.</li>
<li>Hadoop: The Definitive Guide (3rd Edition):
<ul>
<li>Chapter 4: Hadoop I/O (Read section on "Serialization", pages 93—108 and section on "File-Based Data Structures", pages 130—142)</li>
<li>Chapter 5: Developing a MapReduce Application (Skip sections on "Writing a Unit Test with MRUnit" and "Apache Oozie")</li>
<li>Chapter 6: How MapReduce Works (Skip section on "Configuration Tuning")</li>
<li>Chapter 7: MapReduce Types and Formats</li>
<li>Chapter 8: MapReduce Features (Read sections on "Counters", "Side Data distribution", and "Sorting")</li>
</ul>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session03.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session03.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session4" style="padding-top:35px">
<div>
<h3>Session 4: MapReduce — Structured and Unstructured Data <small>February 23</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li><a href="http://lintool.github.com/MapReduceAlgorithms/ed1n/MapReduce-algorithms.pdf">Data-Intensive Text Processing with MapReduce</a>
<ul>
<li>Chapter 4: Inverted Indexing for Text Retrieval</li>
<li>Chapter 6: Processing Relational Data</li>
</ul>
</li>
<li>Brants et al. (2007) <a href="content/Brants_etal_EMNLP2007.pdf">Large Language Models in Machine Translation.</a> <i>EMNLP</i>.</li>
<li>Elsayed et al. (2010) <a href="content/Elsayed_etal_TR2010.pdf">Brute-Force Approaches to Batch Retrieval: Scalable Indexing with MapReduce, or Why Bother?</a>.</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session04.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session04.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session5" style="padding-top:35px">
<div>
<h3>Session 5: MapReduce — Graphs <small>March 2</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li><a href="http://lintool.github.com/MapReduceAlgorithms/ed1n/MapReduce-algorithms.pdf">Data-Intensive Text Processing with MapReduce</a>:
Chapter 5: Graph Algorithms</li>
<li>Cohen. (2009) <a href="content/Cohen_2009.pdf">Graph Twiddling in a MapReduce World.</a> <i>Computing in Science and Engineering</i>.</li>
<li>Lin and Schatz. (2010) <a href="content/Lin_Schatz_MLG2010.pdf">Design Patterns for Efficient Graph Algorithms in MapReduce.</a> <i>MLG</i>.</li>
</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session05.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session05.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session6" style="padding-top:35px">
<div>
<h3>Session 6: MapReduce — Data Mining <small>March 9</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li>Chapter 3, <a href="http://infolab.stanford.edu/~ullman/mmds/ch3.pdf">"Finding Similar Items"</a> of <a href="http://www.mmds.org/">Mining of Massive Datasets</a> by Leskovec, Rajaraman, and Ullman. (Stop reading when you get to 3.4 "Locality-Sensitive Hashing for Documents" on page 87)</li>
<li>White et al. (2010) <a href="content/White_etal_2010.pdf">Web-Scale Computer Vision using MapReduce for Multimedia Data Mining.</a> <i>MDMKDD</i>.</li>
<li>Chu et al. (2006) <a href="content/ChuCT_etal_2006.pdf"> Map-Reduce for Machine Learning on Multicore.</a> <i>NIPS</i>. (This may be a bit dense, but try to get through as much of it as you can.)</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session06.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session06.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session7" style="padding-top:35px">
<div>
<h3>Session 7: Extending MapReduce <small>March 23</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li><a href="http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html">MapReduce: A major step backwards</a></li>
<li>Stonebraker et al. (2010) <a href="content/Stonebraker_etal_CACM2010.pdf">MapReduce and Parallel DBMSs: Friends or Foes?</a> <i>Communications of the ACM</i>, 53(1):64-71.</li>
<li>Dean and Ghemawat. (2010) <a href="content/Dean_Ghemawat_CACM2010.pdf ">MapReduce: A Flexible Data Processing Tool</a> <i>Communications of the ACM</i>, 53(1):72-77.</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session07.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session07.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session8" style="padding-top:35px">
<div>
<h3>Session 8: NoSQL <small>March 30</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li>Chang et al. (2006) <a href="content/ChangFay_etal_OSDI2006.pdf">Bigtable: A Distributed Storage System for Structured Data.</a> <i>OSDI</i>.</li>
<li>Khurana (2012) <a href="content/Khurana_etal_2012.pdf">Introduction to HBase Schema Design.</a> <i>Queue</i>.</li>
<li>Abadi (2012) <a href="content/Abadi_2012.pdf">Consistency Tradeoffs in Modern Distributed Database System Design.</a> <i>IEEE Computer</i>, 45(2):37-42.</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session08.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session08.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session9" style="padding-top:35px">
<div>
<h3>Session 9: Beyond MapReduce — Dataflow Languages <small>April 6</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li>Olston et al. (2008) <a href="content/Olston_etal_SIGMOD2008.pdf">Pig Latin: A Not-So-Foreign Language for Data Processing.</a> <i>SIGMOD</i>.</li>
<li>Zaharia et al. (2012) <a href="content/Zaharia_etal_NSDI2012.pdf">Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.</a> <i>NSDI</i>.</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session09.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session09.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session10" style="padding-top:35px">
<div>
<h3>Session 10: Beyond MapReduce — Graph Processing <small>April 13</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li>Malewicz et al. (2010) <a href="content/Malewicz_etal_SIGMOD2010.pdf">Pregel: A System for Large-Scale Graph Processing.</a> <i>SIGMOD</i>.</li>
<li>Low et al. (2012) <a href="content/Low_etal_VLDB2012.pdf">Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.</a> <i>VLDB</i>.</li>
<li>Xin et al. (2014) <a href="content/Xin_etal_2014.pdf">GraphX: Unifying Data-Parallel and Graph-Parallel Analytics.</a> <i>arXiv:1402.2394</i>.</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session10.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session10.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<section id="session11" style="padding-top:35px">
<div>
<h3>Session 11: Beyond MapReduce — Stream Processing <small>April 20</small></h3>
<h4>Readings <small>(to be completed before class)</small></h4>
<ul>
<li>Zaharia et al. (2013) <a href="content/Zaharia_etal_SOSP2013.pdf">Discretized Streams: Fault-Tolerant Streaming Computation at Scale.</a> <i>SOSP</i>.</li>
<li>Boykin et al. (2014) <a href="content/Boykin_etal_VLDB2014.pdf">Summingbird: A Framework for Integrating Batch and Online MapReduce Computations.</a> <i>VLDB</i>.</li>
<li>Toshniwal et al. (2014) <a href="content/Toshniwal_etal_SIGMOD2014.pdf">Storm @Twitter.</a> <i>SIGMOD</i>.</li>
</ul>
<p style="padding-top: 5px"/>
<h4>Slides</h4>
<p><a href="slides/session11.pptx" class="btn btn-small btn-primary" style="width: 75px">PPTX (Mac)</a>
<a href="slides/session11.pdf" class="btn btn-small btn-info" style="width: 75px">PDF</a>
</p>
<p style="padding-top: 20px"><a href="#">Back to top</a></p>
</div>
</section>
<p style="padding-top:100px" />
</div> <!-- /container -->
<!-- Le javascript
================================================== -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="assets/js/jquery.js"></script>
<script src="assets/js/bootstrap-transition.js"></script>
<script src="assets/js/bootstrap-alert.js"></script>
<script src="assets/js/bootstrap-modal.js"></script>
<script src="assets/js/bootstrap-dropdown.js"></script>
<script src="assets/js/bootstrap-scrollspy.js"></script>
<script src="assets/js/bootstrap-tab.js"></script>
<script src="assets/js/bootstrap-tooltip.js"></script>
<script src="assets/js/bootstrap-popover.js"></script>
<script src="assets/js/bootstrap-button.js"></script>
<script src="assets/js/bootstrap-collapse.js"></script>
<script src="assets/js/bootstrap-carousel.js"></script>
<script src="assets/js/bootstrap-typeahead.js"></script>
</body>
</html>