forked from zhaipro/easy12306
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlearn.py
165 lines (142 loc) · 5.73 KB
/
mlearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding: utf-8
import pathlib
import cv2
import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras import layers
from keras import models
from keras.callbacks import ReduceLROnPlateau
from keras.utils import to_categorical
def load_data(fn='texts.npz', to=False):
data = np.load(fn)
texts, labels = data['texts'], data['labels']
texts = texts / 255.0
_, h, w = texts.shape
texts.shape = (-1, h, w, 1)
if to:
labels = to_categorical(labels)
n = int(texts.shape[0] * 0.9) # 90%用于训练,10%用于测试
return (texts[:n], labels[:n]), (texts[n:], labels[n:])
def savefig(history, fn='loss.jpg', start=2):
# 忽略起点
loss = history.history['loss'][start - 1:]
val_loss = history.history['val_loss'][start - 1:]
epochs = list(range(start, len(loss) + start))
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig(fn)
def main():
(train_x, train_y), (test_x, test_y) = load_data()
model = models.Sequential([
layers.Conv2D(64, (3, 3), padding='same', activation='relu', input_shape=(None, None, 1)),
layers.MaxPooling2D(), # 19 -> 9
layers.Conv2D(64, (3, 3), padding='same', activation='relu'),
layers.MaxPooling2D(), # 9 -> 4
layers.Conv2D(64, (3, 3), padding='same', activation='relu'),
layers.MaxPooling2D(), # 4 -> 2
layers.GlobalAveragePooling2D(),
layers.Dropout(0.25),
layers.Dense(64, activation='relu'),
layers.Dense(80, activation='softmax'),
])
model.summary()
model.compile(optimizer='rmsprop',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 当标准评估停止提升时,降低学习速率
reduce_lr = ReduceLROnPlateau(verbose=1)
history = model.fit(train_x, train_y, epochs=100,
validation_data=(test_x, test_y),
callbacks=[reduce_lr])
savefig(history, start=10)
model.save('model.v1.0.h5', include_optimizer=False)
def load_data_v2():
(train_x, train_y), (test_x, test_y) = load_data(to=True)
# 这里是统计学数据
(train_v2_x, train_v2_y), (test_v2_x, test_v2_y) = load_data('texts.v2.npz')
# 合并
train_x = np.concatenate((train_x, train_v2_x))
train_y = np.concatenate((train_y, train_v2_y))
test_x = np.concatenate((test_x, test_v2_x))
test_y = np.concatenate((test_y, test_v2_y))
return (train_x, train_y), (test_x, test_y)
def acc(y_true, y_pred):
return K.cast(K.equal(K.argmax(y_true + y_pred, axis=-1),
K.argmax(y_pred, axis=-1)),
K.floatx())
def main_v19(): # 1.9
(train_x, train_y), (test_x, test_y) = load_data_v2()
model = models.load_model('model.v1.0.h5')
model.compile(optimizer='RMSprop',
loss='categorical_hinge',
metrics=[acc])
reduce_lr = ReduceLROnPlateau(verbose=1)
history = model.fit(train_x, train_y, epochs=100,
validation_data=(test_x, test_y),
callbacks=[reduce_lr])
savefig(history)
model.save('model.v1.9.h5', include_optimizer=False)
def main_v20():
(train_x, train_y), (test_x, test_y) = load_data()
model = models.Sequential([
layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(None, None, 1)),
layers.MaxPooling2D(), # 19 -> 9
layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
layers.MaxPooling2D(), # 9 -> 4
layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
layers.MaxPooling2D(), # 4 -> 2
layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
layers.MaxPooling2D(), # 2 -> 1
layers.GlobalAveragePooling2D(),
layers.Dropout(0.25),
layers.Dense(64, activation='relu'),
layers.Dense(80, activation='softmax'),
])
model.summary()
model.compile(optimizer='rmsprop',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_x, train_y, epochs=10,
validation_data=(test_x, test_y))
(train_x, train_y), (test_x, test_y) = load_data_v2()
model.compile(optimizer='rmsprop',
loss='categorical_hinge',
metrics=[acc])
reduce_lr = ReduceLROnPlateau(verbose=1)
history = model.fit(train_x, train_y, epochs=100,
validation_data=(test_x, test_y),
callbacks=[reduce_lr])
savefig(history)
# 保存,并扔掉优化器
model.save('model.v2.0.h5', include_optimizer=False)
def predict(texts):
model = models.load_model('model.h5')
texts = texts / 255.0
_, h, w = texts.shape
texts.shape = (-1, h, w, 1)
labels = model.predict(texts)
return labels
def _predict():
texts = np.load('data.npy')
labels = predict(texts)
np.save('labels.npy', labels)
def show():
texts = np.load('data.npy')
labels = np.load('labels.npy')
labels = labels.argmax(axis=1)
pathlib.Path('classify').mkdir(exist_ok=True)
for idx, (text, label) in enumerate(zip(texts, labels)):
# 使用聚类结果命名
fn = f'classify/{label}.{idx}.jpg'
cv2.imwrite(fn, text)
if __name__ == '__main__':
main()
# main_v2()
_predict()
show()