forked from damo-cv/MotionRGBD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetworkConfig.yml
69 lines (63 loc) · 1.7 KB
/
NetworkConfig.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
common:
data: /path/to/dataset/NTU-RGBD
splits: /path/to/dataset/dataset/NTU-RGBD/dataset_splits/@CS # include: train.txt and test.txt
#-------basic Hyparameter----------
visdom:
enable: True
visname: NTU
dataset: NTU #Database name e.g., NTU, THUREAD, NvGesture and IsoGD ...
batch_size: 6
test_batch_size: 6
num_workers: 6
learning_rate: 0.01
learning_rate_min: 0.00001
momentum: 0.9
weight_decay: 0.0003
init_epochs: 0
epochs: 100 # if training on IsoGD dataset, set 300 is better.
report_freq: 100
optim: SGD
dist: True
vis_feature: True # Visualization?
scheduler:
name: cosin
patience: 4
warm_up_epochs: 3
loss:
name: CE
labelsmooth: True
MultiLoss: True
loss_lamdb: [ 1, 0.5, 0.5, 0.5 ]
distill: 1.
model:
Network: I3DWTrans # e.g., I3DWTrans or FusionNet
pretrained: '' # all of experiments are pre-trained on 20BN Jester V1 dataset except for NTU-RGBD.
resume: ''
resumelr: False
sample_duration: 64
sample_size: 224
grad_clip: 5.
SYNC_BN: 1
w: 10
temper: 0.5 # 0.5 for THUREAD and NTU-RGBD; 0.4 for NvGesture and IsoGD
recoupling: True
knn_attention: 0.7
sharpness: True
temp: [ 0.04, 0.07 ]
frp: True
SEHeads: 1
N: 6 # Number of Transformer Blocks
#-------Used for fusion network----------
rgb_checkpoint: ''
depth_checkpoint: ''
dataset:
type: M # M: rgb, K: depth
flip: 0.5 # set 0.0 for NvGesture and IsoGD
rotated: 0.5 # THUREAD: 0.8, others: 0.5
angle: (-10, 10) # Rotation angle. THUREAD: (-45, 45), others: (-10, 10)
Blur: False
resize: (320, 240) #NTU and THUREAD: (320, 240), others:(256, 256)
crop_size: 224 # THUREAD: 200, others: 224
low_frames: 16
media_frames: 32
high_frames: 48