-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathActionExp_v3_l2_loss.py
executable file
·301 lines (233 loc) · 15 KB
/
ActionExp_v3_l2_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#Update: A template version
import os, sys
project_root = os.path.join(os.path.expanduser('~'), 'Dev/NetModules')
sys.path.append(project_root)
import argparse
import torch.nn.utils.clip_grad
import torch
print('torch veriosn:\t {}'.format(torch.__version__))
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.nn.functional as F
from SDN.PointerGRU2Heads_v8 import PointerNetwork
from Devs_ActionProp.datasets.THUMOS14.dataloader_c3dd_aug_fast import cDataset
from PtUtils import cuda_model
from Losses import h_assign as h_match
from Losses import f_assign as f_match
from Losses.losses import Simple_L2, to_one_hot
from PyUtils.AverageMeter import AverageMeter
from PyUtils import dir_utils, log_utils
import progressbar
def str2bool(v):
return v.lower() in ('true', '1', 'y', 'yes')
parser = argparse.ArgumentParser(description="Pytorch implementation of Pointer-Net-LSTM-2Heads")
# Data
parser.add_argument('--batch_size', default=32, type=int, help='Batch size')
parser.add_argument('--seq_len', default=90, type=int, help='clip size')
parser.add_argument('--net_outputs', default=15, type=int, help='number of intervals for lstm outputs')
# Train
parser.add_argument('--start_epoch', default=0, type=int, help='Staring epoch')
parser.add_argument('--nof_epoch', default=100, type=int, help='Number of epochs')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate')
parser.add_argument('--eval', '-e', default='y', type=str2bool, help='evaluate only')
# GPU
parser.add_argument("--gpu_id", default='1', type=str)
parser.add_argument('--multiGpu', '-m', action='store_true', help='positivity constraint')
# Network
parser.add_argument('--input_dim', type=int, default=500, help='Number of hidden units')
parser.add_argument('--embedding_dim', type=int, default=500, help='Number of embedding units')
parser.add_argument('--hidden_dim', type=int, default=512, help='Number of hidden units')
#Other-parameters
parser.add_argument('--hassign_thres', default=0.5, type=float, help='hassignment_threshold')
parser.add_argument('--alpha', default=0.1, type=float, help='trade off between classification and localization')
parser.add_argument('--dropout', default=0.5, type=float, help='dropout rate for training a network')
parser.add_argument('--hmatch', default=1, type=int, help='hungarian matching or fix matching')
parser.add_argument('--EMD', default=1, type=int, help='Using EMD loss or cls loss ')
parser.add_argument('--dataset', default='THUMOS', type=str, help='Specify a dataset')
parser.add_argument('--resume', '-r', default=None, type=str, help='resume from previous ')
parser.add_argument('--fileid', default=1, type=int, help='the ckpt file id')
parser.add_argument('--sufix', default='NoDepsIn3', type=str, help='suffix')
# parser.add_argument('--resume', '-r', default='/home/zwei/Dev/NetModules/ckpts/SDN_mnist_EMD_hmatch-assgin0.75-alpha0.1000-dim512-dropout0.5000-seqlen100-ckpt', type=str, help='resume from previous ')
# script_specific:
match_type = {0: 'FIX', 1: 'HUG'}
def main():
global args
args = (parser.parse_args())
use_cuda = cuda_model.ifUseCuda(args.gpu_id, args.multiGpu)
script_name_stem = dir_utils.get_stem(__file__)
if args.resume is None:
save_directory = dir_utils.get_dir(os.path.join(project_root, 'ckpts', '{:s}'.format(args.dataset), '{:s}-{:s}-assgin{:.2f}-alpha{:.4f}-dim{:d}-dropout{:.4f}-seqlen{:d}-{:s}-{:s}'.
format(script_name_stem, args.sufix, args.hassign_thres, args.alpha, args.hidden_dim, args.dropout, args.seq_len, 'L2', match_type[args.hmatch])))
else:
save_directory = args.resume
log_file = os.path.join(save_directory, 'log-{:s}.txt'.format(dir_utils.get_date_str()))
logger = log_utils.get_logger(log_file)
log_utils.print_config(vars(args), logger)
model = PointerNetwork(input_dim=args.input_dim, embedding_dim=args.embedding_dim,
hidden_dim=args.hidden_dim, max_decoding_len=args.net_outputs, dropout=args.dropout, n_enc_layers=2, output_classes=2)
logger.info("Number of Params\t{:d}".format(sum([p.data.nelement() for p in model.parameters()])))
logger.info('Saving logs to {:s}'.format(log_file))
if args.resume is not None:
ckpt_idx = args.fileid
ckpt_filename = os.path.join(args.resume, 'checkpoint_{:04d}.pth.tar'.format(ckpt_idx))
assert os.path.isfile(ckpt_filename), 'Error: no checkpoint directory found!'
checkpoint = torch.load(ckpt_filename, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'], strict=False)
train_iou = checkpoint['IoU']
args.start_epoch = checkpoint['epoch']
logger.info("=> loading checkpoint '{}', current iou: {:.04f}".format(ckpt_filename, train_iou))
model = cuda_model.convertModel2Cuda(model, gpu_id=args.gpu_id, multiGpu=args.multiGpu)
train_dataset = cDataset(dataset_split='train', seq_length=args.seq_len, sample_rate=[4], rdOffset=True, rdDrop=True)
val_dataset =cDataset(dataset_split='val', seq_length=args.seq_len, sample_rate=[4], rdDrop=False, rdOffset=False)
train_dataloader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=4)
val_dataloader = DataLoader(val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=4)
model_optim = optim.Adam(filter(lambda p:p.requires_grad, model.parameters()), lr=float(args.lr))
optim_scheduler = optim.lr_scheduler.ReduceLROnPlateau(model_optim, 'min', patience=10)
cls_weights = torch.FloatTensor([0.05, 1.0]).cuda()
# cls_weights = None
widgets = ['Test: ', ' -- [ ', progressbar.Counter(), '|', str(len(train_dataloader)), ' ] ',
progressbar.Bar(), ' cls loss: ', progressbar.FormatLabel(''),
' loc loss: ', progressbar.FormatLabel(''),
' IoU : ', progressbar.FormatLabel(''),
' (', progressbar.ETA(), ' ) ']
# bar = progressbar.ProgressBar(max_value=step_per_epoch, widgets=widgets)
# bar.start()
for epoch in range(args.start_epoch, args.nof_epoch+args.start_epoch):
total_losses = AverageMeter()
loc_losses = AverageMeter()
cls_losses = AverageMeter()
matched_IOU = AverageMeter()
true_IOU = AverageMeter()
model.train()
pbar = progressbar.ProgressBar(max_value=len(train_dataloader), widgets=widgets)
pbar.start()
for i_batch, sample_batch in enumerate(train_dataloader):
# pbar.update(i_batch)
feature_batch = Variable(sample_batch[0])
start_indices = Variable(sample_batch[1])
end_indices = Variable(sample_batch[2])
gt_valids = Variable(sample_batch[3])
# gt_overlaps = Variable(sample_batch[4])
# seq_labels = Variable(sample_batch[3])
if use_cuda:
feature_batch = feature_batch.cuda()
start_indices = start_indices.cuda()
end_indices = end_indices.cuda()
gt_positions = torch.stack([start_indices, end_indices], dim=-1)
head_pointer_probs, head_positions, tail_pointer_probs, tail_positions, cls_scores, _ = model(feature_batch)
pred_positions = torch.stack([head_positions, tail_positions], dim=-1)
# pred_scores = F.sigmoid(cls_scores)
if args.hmatch:
assigned_scores, assigned_locations, total_valid, total_iou = h_match.Assign_Batch_v2(gt_positions, pred_positions, gt_valids, thres=args.hassign_thres)
else:
#FIXME: do it later!
assigned_scores, assigned_locations, total_valid, total_iou = f_match.Assign_Batch_v2(gt_positions, pred_positions, gt_valids, thres=args.hassign_thres)
# _, _, total_valid, total_iou = h_match.Assign_Batch_v2(gt_positions, pred_positions, gt_valids, thres=args.hassign_thres)
true_valid, true_iou = h_match.totalMatch_Batch(gt_positions, pred_positions, gt_valids)
assert true_valid == total_valid, 'WRONG'
if total_valid>0:
matched_IOU.update(total_iou / total_valid, total_valid)
true_IOU.update(true_iou/total_valid, total_valid)
assigned_scores = Variable(torch.LongTensor(assigned_scores),requires_grad=False)
# assigned_overlaps = Variable(torch.FloatTensor(assigned_overlaps), requires_grad=False)
assigned_locations = Variable(torch.LongTensor(assigned_locations), requires_grad=False)
if use_cuda:
assigned_scores = assigned_scores.cuda()
assigned_locations = assigned_locations.cuda()
# assigned_overlaps = assigned_overlaps.cuda()
# pred_scores = pred_scores.contiguous().view(-1)
# assigned_scores = assigned_scores.contiguous().view(-1)
# assigned_overlaps = assigned_overlaps.contiguous().view(-1)
# cls_loss = ClsLocLoss2_OneClsRegression(pred_scores, assigned_scores, assigned_overlaps)
cls_scores = cls_scores.contiguous().view(-1, cls_scores.size()[-1])
assigned_scores = assigned_scores.contiguous().view(-1)
cls_loss = F.cross_entropy(cls_scores, assigned_scores, weight=cls_weights)
if total_valid>0:
assigned_head_positions = assigned_locations[:,:,0]
assigned_head_positions = assigned_head_positions.contiguous().view(-1)
#
assigned_tail_positions = assigned_locations[:,:,1]
assigned_tail_positions = assigned_tail_positions.contiguous().view(-1)
head_pointer_probs = head_pointer_probs.contiguous().view(-1, head_pointer_probs.size()[-1])
tail_pointer_probs = tail_pointer_probs.contiguous().view(-1, tail_pointer_probs.size()[-1])
assigned_head_positions = torch.masked_select(assigned_head_positions, assigned_scores.byte())
assigned_tail_positions = torch.masked_select(assigned_tail_positions, assigned_scores.byte())
head_pointer_probs = torch.index_select(head_pointer_probs, dim=0, index=assigned_scores.nonzero().squeeze(1))
tail_pointer_probs = torch.index_select(tail_pointer_probs, dim=0, index=assigned_scores.nonzero().squeeze(1))
# if args.EMD:
assigned_head_positions = to_one_hot(assigned_head_positions, args.seq_len)
assigned_tail_positions = to_one_hot(assigned_tail_positions, args.seq_len)
prediction_head_loss = Simple_L2(head_pointer_probs, assigned_head_positions, needSoftMax=True)
prediction_tail_loss = Simple_L2(tail_pointer_probs, assigned_tail_positions, needSoftMax=True)
# else:
# prediction_head_loss = F.cross_entropy(head_pointer_probs, assigned_head_positions)
# prediction_tail_loss = F.cross_entropy(tail_pointer_probs, assigned_tail_positions)
loc_losses.update(prediction_head_loss.data.item() + prediction_tail_loss.data.item(),
total_valid)#FIXME
total_loss = args.alpha*(prediction_head_loss + prediction_tail_loss) + cls_loss
else:
total_loss = cls_loss
model_optim.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
model_optim.step()
cls_losses.update(cls_loss.data.item(), feature_batch.size(0))
total_losses.update(total_loss.item(), feature_batch.size(0))
widgets[-8] = progressbar.FormatLabel('{:04.4f}'.format(cls_losses.avg))
widgets[-6] = progressbar.FormatLabel('{:04.4f}'.format(loc_losses.avg))
widgets[-4] = progressbar.FormatLabel('{:01.4f}'.format(matched_IOU.avg))
pbar.update(i_batch)
logger.info(
"Train -- Epoch :{:06d}, LR: {:.6f},\tloss={:.4f}, \t c-loss:{:.4f}, \tloc-loss:{:.4f}\tAvg-matched_IOU:{:.4f}\t Avg-true-IOU:{:.4f}".format(
epoch,
model_optim.param_groups[0]['lr'], total_losses.avg, cls_losses.avg, loc_losses.avg, matched_IOU.avg, true_IOU.avg))
train_iou = matched_IOU.avg
optim_scheduler.step(total_losses.avg)
model.eval()
matched_IOU = AverageMeter()
pbar = progressbar.ProgressBar(max_value=len(val_dataloader))
for i_batch, sample_batch in enumerate(val_dataloader):
pbar.update(i_batch)
feature_batch = Variable(sample_batch[0])
start_indices = Variable(sample_batch[1])
end_indices = Variable(sample_batch[2])
gt_valids = Variable(sample_batch[3])
# valid_indices = Variable(sample_batch[3])
if use_cuda:
feature_batch = feature_batch.cuda()
start_indices = start_indices.cuda()
end_indices = end_indices.cuda()
gt_positions = torch.stack([start_indices, end_indices], dim=-1)
head_pointer_probs, head_positions, tail_pointer_probs, tail_positions, cls_scores, _ = model(
feature_batch)
pred_positions = torch.stack([head_positions, tail_positions], dim=-1)
# assigned_scores, assigned_locations, total_valid, total_iou = h_match.Assign_Batch_eval(gt_positions, pred_positions, gt_valids, thres=args.hassign_thres) #FIXME
matched_valid, matched_iou = h_match.totalMatch_Batch(gt_positions, pred_positions, gt_valids)
if matched_valid>0:
matched_IOU.update(matched_iou / matched_valid, matched_valid)
logger.info(
"Val -- Epoch :{:06d}, LR: {:.6f},\tloc-Avg-matched_IOU:{:.4f}".format(
epoch,model_optim.param_groups[0]['lr'], matched_IOU.avg, ))
if epoch % 1 == 0 :
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'loss':total_losses.avg,
'cls_loss': cls_losses.avg,
'loc_loss': loc_losses.avg,
'train-IOU':train_iou,
'IoU': matched_IOU.avg}, (epoch+1), file_direcotry=save_directory)
def save_checkpoint(state, epoch, file_direcotry):
filename = 'checkpoint_{:04d}.pth.tar'
file_direcotry = dir_utils.get_dir(file_direcotry)
file_path = os.path.join(file_direcotry, filename.format(epoch))
torch.save(state, file_path)
if __name__ == '__main__':
main()