forked from yinwang0/historical
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcek.ss
164 lines (135 loc) · 5.33 KB
/
cek.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
(case-sensitive #t)
(load "pmatch.scm")
(define value?
(lambda (exp)
(pmatch exp
[,x (guard (atom? x)) #t]
[((lambda (,x) ,e) ,env) #t]
[else #f])))
(define mt-env 'mt-env)
(define mt-h 'mt-h)
(define mt-k 'mt-k)
(define -->
(lambda (s)
(pmatch s
[(,v^ (ARG (,rand ,env) ,k) ,h) (guard (value? v^))
`((,rand ,env) (FUN ,v^ ,k) (ARG ,@h))]
[(,v^ (FUN ((lambda (,x) ,body) ,env) ,k) ,h) (guard (value? v^))
`((,body ((,x ,v^) ,env)) ,k (FUN ,@h))]
[((,x ,env) ,k ,h) (guard (atom? x))
`(, (apply-env env x) ,k ((ENV ,x ,env) ,@h))]
[(((,rator ,rand) ,env) ,k ,h)
`((,rator ,env) (ARG (,rand ,env) ,k) (APP ,@h))])))
(define <--
(lambda (s)
(pmatch s
[((,rand ,env) (FUN ,v^ ,k) (ARG . ,h))
`(,v^ (ARG (,rand ,env) ,k) ,h)]
[((,body ((,x ,v^) ,env)) ,k (FUN . ,h))
`(,v^ (FUN ((lambda (,x) ,body) ,env) ,k) ,h)]
[(,y ,k ((ENV ,x ,env) . ,h))
`((,x ,env) ,k ,h)]
[((,rator ,env) (ARG (,rand ,env) ,k) (APP . ,h))
`(((,rator ,rand) ,env) ,k ,h)])))
; For the convenience of experiments, lookup will output unbound variables
; symbolically instead of raising errors
(define apply-env
(lambda (env x)
(pmatch env
[,env (guard (eq? env mt-env)) x]
[((,x^ ,v^) ,env)
(if (eq? x x^) v^ (apply-env env x))])))
(define de-closure
(lambda (clos)
(letrec ([dec
(lambda (exp bound env)
(pmatch exp
[,u (guard (symbol? u) (not (memq u bound))) (apply-env env u)]
[(lambda (,u) ,e)
`(lambda (,u) , (dec e (cons u bound) env))]
[(,e1 ,e2) `(, (dec e1 bound env) , (dec e2 bound env))]
[,exp exp]))])
(dec (car clos) '() (cadr clos)))))
(define ==>
(lambda (exp)
(letrec ((step
(lambda (s n)
(pmatch s
[(,exp ,k ,h) (guard (value? exp) (eq? k mt-k))
(printf "~a steps\n" n)
s]
[else (step (--> s) (add1 n))]))))
(step exp 0))))
(define <==
(lambda (exp)
(letrec ((step
(lambda (s n)
(pmatch s
[(,exp ,k ,h) (guard (eq? h mt-h))
(printf "~a steps\n" n)
s]
[else (step (<-- s) (add1 n))]))))
(step exp 0))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Examples
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; go forwards, backwards, back-and-forth, ...
; source state
(define s `((((lambda (x) x) ((lambda (u) u) y)) ,mt-env) ,mt-k ,mt-h))
; go forwards (evaluate multiple times)
(define s
(let ([s^ (--> s)])
(printf "~a\n" s^)
s^))
;; =>
;; (((lambda (x) x) mt-env) (ARG (((lambda (u) u) y) mt-env) mt-k) (APP . mt-h))
;; ((((lambda (u) u) y) mt-env) (FUN ((lambda (x) x) mt-env) mt-k) (ARG APP . mt-h))
;; (((lambda (u) u) mt-env) (ARG (y mt-env) (FUN ((lambda (x) x) mt-env) mt-k)) (APP ARG APP . mt-h))
;; ((y mt-env) (FUN ((lambda (u) u) mt-env) (FUN ((lambda (x) x) mt-env) mt-k)) (ARG APP ARG APP . mt-h))
;; (y (FUN ((lambda (u) u) mt-env) (FUN ((lambda (x) x) mt-env) mt-k)) ((ENV y mt-env) ARG APP ARG APP . mt-h))
;; ((u ((u y) mt-env)) (FUN ((lambda (x) x) mt-env) mt-k) (FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
;; (y (FUN ((lambda (x) x) mt-env) mt-k) ((ENV u ((u y) mt-env)) FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
;; ((x ((x y) mt-env)) mt-k (FUN (ENV u ((u y) mt-env)) FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
;; (y mt-k ((ENV x ((x y) mt-env)) FUN (ENV u ((u y) mt-env)) FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
; go backwards
(define s
(let ([s^ (<-- s)])
(printf "~a\n" s^)
s^))
;; =>
;; ((x ((x y) mt-env)) mt-k (FUN (ENV u ((u y) mt-env)) FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
;; (y (FUN ((lambda (x) x) mt-env) mt-k) ((ENV u ((u y) mt-env)) FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
;; ((u ((u y) mt-env)) (FUN ((lambda (x) x) mt-env) mt-k) (FUN (ENV y mt-env) ARG APP ARG APP . mt-h))
;; (y (FUN ((lambda (u) u) mt-env) (FUN ((lambda (x) x) mt-env) mt-k)) ((ENV y mt-env) ARG APP ARG APP . mt-h))
;; ((y mt-env) (FUN ((lambda (u) u) mt-env) (FUN ((lambda (x) x) mt-env) mt-k)) (ARG APP ARG APP . mt-h))
;; (((lambda (u) u) mt-env) (ARG (y mt-env) (FUN ((lambda (x) x) mt-env) mt-k)) (APP ARG APP . mt-h))
;; ((((lambda (u) u) y) mt-env) (FUN ((lambda (x) x) mt-env) mt-k) (ARG APP . mt-h))
;; (((lambda (x) x) mt-env) (ARG (((lambda (u) u) y) mt-env) mt-k) (APP . mt-h))
;; ((((lambda (x) x) ((lambda (u) u) y)) mt-env) mt-k mt-h)
;; or switch directions any time you like
;;; Example 2: factorial
(load "encoding.scm")
(define s `(((,! ,lfive) ,mt-env) ,mt-k ,mt-h))
(define r1 (==> s))
; => 1420 steps (result too large to print)
(define r2 (<== r1))
; => 1420 steps
(equal? r2 s)
; => #t
(define test
(lambda (name exp)
(let* ([s `((,exp ,mt-env) ,mt-k ,mt-h)]
[r1 (==> s)]
[r2 (<== r1)])
(if (equal? r2 s)
(printf "test \"~a\" ... succeeded\n" name)
(printf "test \"~a\" ... failed\n" name)))))
(test "succ" `(,lsucc ,lfive))
(test "pred" `(,lpred ,lfive))
(test "times" `((,ltimes ,ltwo) ,lthree))
(test "plus" `((,lplus ,ltwo) ,lthree))
(test "sub" `((,lsub ,lthree) ,ltwo))
(test "pow" `((,lpow ,ltwo) ,lthree))
(test "car" `(,lcar ((,lpair ,lone) ,ltwo)))
(test "!5" `(,! ,lfive))
(test "!7" `(,! ,l7))