forked from axelparolta/Phore
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbip38.cpp
242 lines (189 loc) · 9.02 KB
/
bip38.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright (c) 2017 The PIVX Core developers
// Copyright (c) 2018 The Atheneum Developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "bip38.h"
#include "base58.h"
#include "hash.h"
#include "pubkey.h"
#include "util.h"
#include "utilstrencodings.h"
#include <openssl/aes.h>
#include <openssl/sha.h>
#include <secp256k1.h>
#include <string>
/** 39 bytes - 78 characters
* 1) Prefix - 2 bytes - 4 chars - strKey[0..3]
* 2) Flagbyte - 1 byte - 2 chars - strKey[4..5]
* 3) addresshash - 4 bytes - 8 chars - strKey[6..13]
* 4) Owner Entropy - 8 bytes - 16 chars - strKey[14..29]
* 5) Encrypted Part 1 - 8 bytes - 16 chars - strKey[30..45]
* 6) Encrypted Part 2 - 16 bytes - 32 chars - strKey[46..77]
*/
void DecryptAES(uint256 encryptedIn, uint256 decryptionKey, uint256& output)
{
AES_KEY key;
AES_set_decrypt_key(decryptionKey.begin(), 256, &key);
AES_decrypt(encryptedIn.begin(), output.begin(), &key);
}
void ComputePreFactor(std::string strPassphrase, std::string strSalt, uint256& prefactor)
{
//passfactor is the scrypt hash of passphrase and ownersalt (NOTE this needs to handle alt cases too in the future)
uint64_t s = uint256(ReverseEndianString(strSalt)).Get64();
scrypt_hash(strPassphrase.c_str(), strPassphrase.size(), BEGIN(s), strSalt.size() / 2, BEGIN(prefactor), 16384, 8, 8, 32);
}
void ComputePassfactor(std::string ownersalt, uint256 prefactor, uint256& passfactor)
{
//concat prefactor and ownersalt
uint512 temp(ReverseEndianString(HexStr(prefactor) + ownersalt));
Hash(temp.begin(), 40, passfactor.begin()); //40 bytes is the length of prefactor + salt
Hash(passfactor.begin(), 32, passfactor.begin());
}
bool ComputePasspoint(uint256 passfactor, CPubKey& passpoint)
{
//passpoint is the ec_mult of passfactor on secp256k1
int clen = 65;
return secp256k1_ec_pubkey_create(UBEGIN(passpoint), &clen, passfactor.begin(), true) != 0;
}
void ComputeSeedBPass(CPubKey passpoint, std::string strAddressHash, std::string strOwnerSalt, uint512& seedBPass)
{
// Derive decryption key for seedb using scrypt with passpoint, addresshash, and ownerentropy
string salt = ReverseEndianString(strAddressHash + strOwnerSalt);
uint256 s2(salt);
scrypt_hash(BEGIN(passpoint), HexStr(passpoint).size() / 2, BEGIN(s2), salt.size() / 2, BEGIN(seedBPass), 1024, 1, 1, 64);
}
void ComputeFactorB(uint256 seedB, uint256& factorB)
{
//factorB - a double sha256 hash of seedb
Hash(seedB.begin(), 24, factorB.begin()); //seedB is only 24 bytes
Hash(factorB.begin(), 32, factorB.begin());
}
std::string AddressToBip38Hash(std::string address)
{
uint256 addrCheck;
Hash((void*)address.c_str(), address.size(), addrCheck.begin());
Hash(addrCheck.begin(), 32, addrCheck.begin());
return HexStr(addrCheck).substr(0, 8);
}
std::string BIP38_Encrypt(std::string strAddress, std::string strPassphrase, uint256 privKey, bool fCompressed)
{
string strAddressHash = AddressToBip38Hash(strAddress);
uint512 hashed;
uint64_t salt = uint256(ReverseEndianString(strAddressHash)).Get64();
scrypt_hash(strPassphrase.c_str(), strPassphrase.size(), BEGIN(salt), strAddressHash.size() / 2, BEGIN(hashed), 16384, 8, 8, 64);
uint256 derivedHalf1(hashed.ToString().substr(64, 64));
uint256 derivedHalf2(hashed.ToString().substr(0, 64));
//block1 = (pointb[1...16] xor derivedhalf1[0...15])
uint256 block1 = uint256((privKey << 128) ^ (derivedHalf1 << 128)) >> 128;
//encrypt part 1
uint512 encrypted1;
AES_KEY key;
AES_set_encrypt_key(derivedHalf2.begin(), 256, &key);
AES_encrypt(block1.begin(), encrypted1.begin(), &key);
//block2 = (pointb[17...32] xor derivedhalf1[16...31]
uint256 p2 = privKey >> 128;
uint256 dh12 = derivedHalf1 >> 128;
uint256 block2 = uint256(p2 ^ dh12);
//encrypt part 2
uint512 encrypted2;
AES_encrypt(block2.begin(), encrypted2.begin(), &key);
string strPrefix = "0142";
strPrefix += (fCompressed ? "E0" : "C0");
uint512 encryptedKey(ReverseEndianString(strPrefix + strAddressHash));
//add encrypted1 to the end of encryptedKey
encryptedKey = encryptedKey | (encrypted1 << 56);
//add encrypted2 to the end of encryptedKey
encryptedKey = encryptedKey | (encrypted2 << (56 + 128));
//Base58 checksum is the 4 bytes of dSHA256 hash of the encrypted key
uint256 hashChecksum = Hash(encryptedKey.begin(), encryptedKey.begin() + 39);
uint512 b58Checksum(hashChecksum.ToString().substr(64 - 8, 8));
// append the encrypted key with checksum (currently occupies 312 bits)
encryptedKey = encryptedKey | (b58Checksum << 312);
//43 bytes is the total size that we are encoding
return EncodeBase58(encryptedKey.begin(), encryptedKey.begin() + 43);
}
bool BIP38_Decrypt(std::string strPassphrase, std::string strEncryptedKey, uint256& privKey, bool& fCompressed)
{
std::string strKey = DecodeBase58(strEncryptedKey.c_str());
//incorrect encoding of key, it must be 39 bytes - and another 4 bytes for base58 checksum
if (strKey.size() != (78 + 8))
return false;
//invalid prefix
if (uint256(ReverseEndianString(strKey.substr(0, 2))) != uint256(0x01))
return false;
uint256 type(ReverseEndianString(strKey.substr(2, 2)));
uint256 flag(ReverseEndianString(strKey.substr(4, 2)));
std::string strAddressHash = strKey.substr(6, 8);
std::string ownersalt = strKey.substr(14, 16);
uint256 encryptedPart1(ReverseEndianString(strKey.substr(30, 16)));
uint256 encryptedPart2(ReverseEndianString(strKey.substr(46, 32)));
fCompressed = (flag & uint256(0x20)) != 0;
//not ec multiplied
if (type == uint256(0x42)) {
uint512 hashed;
encryptedPart1 = uint256(ReverseEndianString(strKey.substr(14, 32)));
uint64_t salt = uint256(ReverseEndianString(strAddressHash)).Get64();
scrypt_hash(strPassphrase.c_str(), strPassphrase.size(), BEGIN(salt), strAddressHash.size() / 2, BEGIN(hashed), 16384, 8, 8, 64);
uint256 derivedHalf1(hashed.ToString().substr(64, 64));
uint256 derivedHalf2(hashed.ToString().substr(0, 64));
uint256 decryptedPart1;
DecryptAES(encryptedPart1, derivedHalf2, decryptedPart1);
uint256 decryptedPart2;
DecryptAES(encryptedPart2, derivedHalf2, decryptedPart2);
//combine decrypted parts into 64 bytes
uint256 temp1 = decryptedPart2 << 128;
temp1 = temp1 | decryptedPart1;
//xor the decryption with the derived half 1 for the final key
privKey = temp1 ^ derivedHalf1;
return true;
} else if (type != uint256(0x43)) //invalid type
return false;
bool fLotSequence = (flag & 0x04) != 0;
std::string prefactorSalt = ownersalt;
if (fLotSequence)
prefactorSalt = ownersalt.substr(0, 8);
uint256 prefactor;
ComputePreFactor(strPassphrase, prefactorSalt, prefactor);
uint256 passfactor;
if (fLotSequence)
ComputePassfactor(ownersalt, prefactor, passfactor);
else
passfactor = prefactor;
CPubKey passpoint;
if (!ComputePasspoint(passfactor, passpoint))
return false;
uint512 seedBPass;
ComputeSeedBPass(passpoint, strAddressHash, ownersalt, seedBPass);
//get derived halfs, being mindful for endian switch
uint256 derivedHalf1(seedBPass.ToString().substr(64, 64));
uint256 derivedHalf2(seedBPass.ToString().substr(0, 64));
/** Decrypt encryptedpart2 using AES256Decrypt to yield the last 8 bytes of seedb and the last 8 bytes of encryptedpart1. **/
uint256 decryptedPart2;
DecryptAES(encryptedPart2, derivedHalf2, decryptedPart2);
//xor decryptedPart2 and 2nd half of derived half 1
uint256 x0 = derivedHalf1 >> 128; //drop off the first half (note: endian)
uint256 x1 = decryptedPart2 ^ x0;
uint256 seedbPart2 = x1 >> 64;
/** Decrypt encryptedpart1 to yield the remainder of seedb. **/
uint256 decryptedPart1;
uint256 x2 = x1 & uint256("0xffffffffffffffff"); // set x2 to seedbPart1 (still encrypted)
x2 = x2 << 64; //make room to add encryptedPart1 to the front
x2 = encryptedPart1 | x2; //combine with encryptedPart1
DecryptAES(x2, derivedHalf2, decryptedPart1);
//decrypted part 1: seedb[0..15] xor derivedhalf1[0..15]
uint256 x3 = derivedHalf1 & uint256("0xffffffffffffffffffffffffffffffff");
uint256 seedbPart1 = decryptedPart1 ^ x3;
uint256 seedB = seedbPart1 | (seedbPart2 << 128);
uint256 factorB;
ComputeFactorB(seedB, factorB);
//multiply passfactor by factorb mod N to yield the priv key
privKey = factorB;
if (!secp256k1_ec_privkey_tweak_mul(privKey.begin(), passfactor.begin()))
return false;
//double check that the address hash matches our final privkey
CKey k;
k.Set(privKey.begin(), privKey.end(), fCompressed);
CPubKey pubkey = k.GetPubKey();
string address = CBitcoinAddress(pubkey.GetID()).ToString();
return strAddressHash == AddressToBip38Hash(address);
}