forked from facebookresearch/jepa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_distributed.py
152 lines (126 loc) · 4.75 KB
/
main_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
import pprint
import yaml
import submitit
from app.scaffold import main as app_main
from src.utils.logging import get_logger
logger = get_logger(force=True)
parser = argparse.ArgumentParser()
parser.add_argument(
'--folder', type=str,
help='location to save submitit logs',
default='/fsx-jepa/massran/submitit/')
parser.add_argument(
'--exclude', type=str,
help='nodes to exclude from training',
default=None)
parser.add_argument(
'--batch-launch', action='store_true',
help='whether fname points to a file to batch-lauch several config files')
parser.add_argument(
'--fname', type=str,
help='yaml file containing config file names to launch',
default='configs.yaml')
parser.add_argument(
'--partition', type=str,
help='cluster partition to submit jobs on')
parser.add_argument(
'--time', type=int, default=4300,
help='time in minutes to run job')
class Trainer:
def __init__(self, args_pretrain, load_model=None):
self.app = args_pretrain['app']
self.args_pretrain = args_pretrain
self.load_model = load_model
def __call__(self):
app = self.app
params = self.args_pretrain
load_model = self.load_model
logger.info('loaded pretrain params...')
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(params)
# Launch app with loaded config
resume_preempt = False if load_model is None else load_model
app_main(app, args=params, resume_preempt=resume_preempt)
def checkpoint(self):
fb_trainer = Trainer(self.args_pretrain, True)
return submitit.helpers.DelayedSubmission(fb_trainer,)
def launch_app_with_parsed_args(
args_for_pretrain,
submitit_folder,
partition,
timeout=4300,
nodes=1,
tasks_per_node=1,
exclude_nodes=None
):
executor = submitit.AutoExecutor(
folder=os.path.join(submitit_folder, 'job_%j'),
slurm_max_num_timeout=20)
executor.update_parameters(
slurm_partition=partition,
slurm_mem_per_gpu='55G',
timeout_min=timeout,
nodes=nodes,
tasks_per_node=tasks_per_node,
cpus_per_task=12,
gpus_per_node=tasks_per_node)
if args.exclude is not None:
executor.update_parameters(slurm_exclude=args.exclude)
jobs, trainers = [], []
with executor.batch():
for ap in args_for_pretrain:
fb_trainer = Trainer(ap)
job = executor.submit(fb_trainer,)
trainers.append(fb_trainer)
jobs.append(job)
for job in jobs:
print(job.job_id)
def launch():
# ---------------------------------------------------------------------- #
# 1. Put config file names in a list
# ---------------------------------------------------------------------- #
config_fnames = [args.fname]
# -- If batch-launch is True, then the args.fname yaml file is not a
# -- config, but actually specifies a list of other config files
# -- to run in a slurm job array
if args.batch_launch:
with open(args.fname, 'r') as y_file:
config_fnames = yaml.load(y_file, Loader=yaml.FullLoader)
# ---------------------------------------------------------------------- #
# ---------------------------------------------------------------------- #
# 2. Parse each yaml config file as a dict and place in list
# ---------------------------------------------------------------------- #
nodes, tasks_per_node = None, None
configs = []
for f in config_fnames:
with open(f, 'r') as y_file:
_params = yaml.load(y_file, Loader=yaml.FullLoader)
nodes = int(_params.get('nodes'))
tasks_per_node = int(_params.get('tasks_per_node'))
configs += [_params]
logger.info(f'Loaded {len(configs)} config files')
logger.info(f'Running all jobs with {nodes=} / {tasks_per_node=}')
# ---------------------------------------------------------------------- #
# ---------------------------------------------------------------------- #
# 3. Launch evals with parsed config files
# ---------------------------------------------------------------------- #
launch_app_with_parsed_args(
args_for_pretrain=configs,
submitit_folder=args.folder,
partition=args.partition,
timeout=args.time,
nodes=nodes,
tasks_per_node=tasks_per_node,
exclude_nodes=args.exclude)
# ---------------------------------------------------------------------- #
if __name__ == '__main__':
args = parser.parse_args()
launch()