forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverify-rdft2.c
307 lines (271 loc) · 8.98 KB
/
verify-rdft2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "verify.h"
/* copy real A into real B, using output stride of A and input stride of B */
typedef struct {
dotens2_closure k;
R *ra;
R *rb;
} cpyr_closure;
static void cpyr0(dotens2_closure *k_,
int indxa, int ondxa, int indxb, int ondxb)
{
cpyr_closure *k = (cpyr_closure *)k_;
k->rb[indxb] = k->ra[ondxa];
UNUSED(indxa); UNUSED(ondxb);
}
static void cpyr(R *ra, const bench_tensor *sza,
R *rb, const bench_tensor *szb)
{
cpyr_closure k;
k.k.apply = cpyr0;
k.ra = ra; k.rb = rb;
bench_dotens2(sza, szb, &k.k);
}
/* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
of A and input stride of B. Only copies non-redundant half; other
half must be copied via mkhermitian. */
typedef struct {
dotens2_closure k;
int n;
int as;
int scalea;
R *ra, *ia;
R *rb, *ib;
} cpyhc2_closure;
static void cpyhc20(dotens2_closure *k_,
int indxa, int ondxa, int indxb, int ondxb)
{
cpyhc2_closure *k = (cpyhc2_closure *)k_;
int i, n = k->n;
int scalea = k->scalea;
int as = k->as * scalea;
R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
R *rb = k->rb + indxb, *ib = k->ib + indxb;
UNUSED(indxa); UNUSED(ondxb);
for (i = 0; i < n/2 + 1; ++i) {
rb[2*i] = ra[as*i];
ib[2*i] = ia[as*i];
}
}
static void cpyhc2(R *ra, R *ia,
const bench_tensor *sza, const bench_tensor *vecsza,
int scalea,
R *rb, R *ib, const bench_tensor *szb)
{
cpyhc2_closure k;
BENCH_ASSERT(sza->rnk <= 1);
k.k.apply = cpyhc20;
k.n = tensor_sz(sza);
k.scalea = scalea;
if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
k.as = 0;
else
k.as = sza->dims[0].os;
k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
bench_dotens2(vecsza, szb, &k.k);
}
/* icpyhc2 is the inverse of cpyhc2 */
static void icpyhc20(dotens2_closure *k_,
int indxa, int ondxa, int indxb, int ondxb)
{
cpyhc2_closure *k = (cpyhc2_closure *)k_;
int i, n = k->n;
int scalea = k->scalea;
int as = k->as * scalea;
R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
UNUSED(ondxa); UNUSED(indxb);
for (i = 0; i < n/2 + 1; ++i) {
ra[as*i] = rb[2*i];
ia[as*i] = ib[2*i];
}
}
static void icpyhc2(R *ra, R *ia,
const bench_tensor *sza, const bench_tensor *vecsza,
int scalea,
R *rb, R *ib, const bench_tensor *szb)
{
cpyhc2_closure k;
BENCH_ASSERT(sza->rnk <= 1);
k.k.apply = icpyhc20;
k.n = tensor_sz(sza);
k.scalea = scalea;
if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
k.as = 0;
else
k.as = sza->dims[0].is;
k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
bench_dotens2(vecsza, szb, &k.k);
}
typedef struct {
dofft_closure k;
bench_problem *p;
} dofft_rdft2_closure;
static void rdft2_apply(dofft_closure *k_,
bench_complex *in, bench_complex *out)
{
dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
bench_problem *p = k->p;
bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
bench_tensor *probsz2, *totalsz2, *pckdsz2;
bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
bench_real *ri, *ii, *ro, *io;
int n2, totalscale;
totalsz = tensor_append(p->vecsz, p->sz);
pckdsz = verify_pack(totalsz, 2);
n2 = tensor_sz(totalsz);
if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) *
(p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
ri = (bench_real *) p->in;
ro = (bench_real *) p->out;
if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
}
else {
probsz2 = mktensor(0);
totalsz2 = tensor_copy(totalsz);
pckdsz2 = tensor_copy(pckdsz);
}
totalsz_swap = tensor_copy_swapio(totalsz);
pckdsz_swap = tensor_copy_swapio(pckdsz);
totalsz2_swap = tensor_copy_swapio(totalsz2);
pckdsz2_swap = tensor_copy_swapio(pckdsz2);
probsz2_swap = tensor_copy_swapio(probsz2);
/* confusion: the stride is the distance between complex elements
when using interleaved format, but it is the distance between
real elements when using split format */
if (p->split) {
ii = p->ini ? (bench_real *) p->ini : ri + n2;
io = p->outi ? (bench_real *) p->outi : ro + n2;
totalscale = 1;
} else {
ii = p->ini ? (bench_real *) p->ini : ri + 1;
io = p->outi ? (bench_real *) p->outi : ro + 1;
totalscale = 2;
}
if (p->sign < 0) { /* R2HC */
int N, vN, i;
cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
after_problem_rcopy_from(p, ri);
doit(1, p);
after_problem_hccopy_to(p, ro, io);
if (k->k.recopy_input)
cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
cpyhc2(ro, io, probsz2, totalsz2, totalscale,
&c_re(out[0]), &c_im(out[0]), pckdsz2);
N = tensor_sz(p->sz);
vN = tensor_sz(p->vecsz);
for (i = 0; i < vN; ++i)
mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
}
else { /* HC2R */
icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
&c_re(in[0]), &c_im(in[0]), pckdsz2);
after_problem_hccopy_from(p, ri, ii);
doit(1, p);
after_problem_rcopy_to(p, ro);
if (k->k.recopy_input)
cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
&c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
mkreal(out, tensor_sz(pckdsz));
cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
}
tensor_destroy(totalsz);
tensor_destroy(pckdsz);
tensor_destroy(totalsz_swap);
tensor_destroy(pckdsz_swap);
tensor_destroy(probsz2);
tensor_destroy(totalsz2);
tensor_destroy(pckdsz2);
tensor_destroy(probsz2_swap);
tensor_destroy(totalsz2_swap);
tensor_destroy(pckdsz2_swap);
}
void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
{
C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
int n, vecn, N;
dofft_rdft2_closure k;
BENCH_ASSERT(p->kind == PROBLEM_REAL);
if (!BENCH_FINITE_RNK(p->sz->rnk) || !BENCH_FINITE_RNK(p->vecsz->rnk))
return; /* give up */
k.k.apply = rdft2_apply;
k.k.recopy_input = 0;
k.p = p;
if (rounds == 0)
rounds = 20; /* default value */
n = tensor_sz(p->sz);
vecn = tensor_sz(p->vecsz);
N = n * vecn;
inA = (C *) bench_malloc(N * sizeof(C));
inB = (C *) bench_malloc(N * sizeof(C));
inC = (C *) bench_malloc(N * sizeof(C));
outA = (C *) bench_malloc(N * sizeof(C));
outB = (C *) bench_malloc(N * sizeof(C));
outC = (C *) bench_malloc(N * sizeof(C));
tmp = (C *) bench_malloc(N * sizeof(C));
e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->s = 0.0;
if (p->sign < 0)
e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, TIME_SHIFT));
else
e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, FREQ_SHIFT));
if (!p->in_place && !p->destroy_input)
preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
N, inA, inB, outB, rounds);
bench_free(tmp);
bench_free(outC);
bench_free(outB);
bench_free(outA);
bench_free(inC);
bench_free(inB);
bench_free(inA);
}
void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
double t[6])
{
dofft_rdft2_closure k;
int n;
C *a, *b;
BENCH_ASSERT(p->kind == PROBLEM_REAL);
BENCH_ASSERT(p->sz->rnk == 1);
BENCH_ASSERT(p->vecsz->rnk == 0);
k.k.apply = rdft2_apply;
k.k.recopy_input = 0;
k.p = p;
n = tensor_sz(p->sz);
a = (C *) bench_malloc(n * sizeof(C));
b = (C *) bench_malloc(n * sizeof(C));
accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign,
n, a, b, rounds, impulse_rounds, t);
bench_free(b);
bench_free(a);
}