forked from Ewenwan/ShiYanLou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebn.txt
239 lines (187 loc) · 8.69 KB
/
debn.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#-*- coding:utf-8 -*-
#!/usr/bin/env python
# export PYTHONPATH=/home/wanyouwen/ewenwan/software/caffe_yolo/caffe/python
# sudo python2 examples/ristretto/resNet/caffe_no_batchnorm.py /data4/quantization/models/ResNet/ResNet-152-train-val.prototxt |
# /data4/quantization/models/ResNet/ResNet-152-model.caffemodel --output_model ResNet-152-train-val-remove-bn.prototxt --output_weight ResNet-152-model-remove-bn.caffemodel
#import _init_paths
import numpy as np
import sys
import os
# caffe python 接口
sys.path.insert(0,"/home/wanyouwen/ewenwan/software/caffe_yolo/caffe/python")
import os.path as osp
import google.protobuf as pb
from argparse import ArgumentParser
import sys
import caffe
# 载入原始模型
def load_and_fill_biases(src_model, src_weights, dst_model, dst_weights):
with open(src_model) as f:
model = caffe.proto.caffe_pb2.NetParameter()
pb.text_format.Merge(f.read(), model)
for i, layer in enumerate(model.layer):
# 卷积层 后面会有 BN层
if layer.type == 'Convolution': # or layer.type == 'Scale':
# Add bias layer if needed
if layer.convolution_param.bias_term == False:
layer.convolution_param.bias_term = True
layer.convolution_param.bias_filler.type = 'constant'
layer.convolution_param.bias_filler.value = 0.0
with open(dst_model, 'w') as f:
f.write(pb.text_format.MessageToString(model))
caffe.set_mode_gpu()
net_src = caffe.Net(src_model, src_weights, caffe.TEST)
net_dst = caffe.Net(dst_model, caffe.TEST)
for key in net_src.params.keys():
for i in range(len(net_src.params[key])):
net_dst.params[key][i].data[:] = net_src.params[key][i].data[:]
if dst_weights is not None:
# Store params
pass
return net_dst
def merge_conv_and_bn(net, i_conv, i_bn, i_scale):
# This is based on Kyeheyon's work
assert(i_conv != None)
assert(i_bn != None)
def copy_double(data):
return np.array(data, copy=True, dtype=np.double)
key_conv = net._layer_names[i_conv]
key_bn = net._layer_names[i_bn]
key_scale = net._layer_names[i_scale] if i_scale else None
# Copy
bn_mean = copy_double(net.params[key_bn][0].data)
bn_variance = copy_double(net.params[key_bn][1].data)
num_bn_samples = copy_double(net.params[key_bn][2].data)
# and Invalidate the BN layer
net.params[key_bn][0].data[:] = 0
net.params[key_bn][1].data[:] = 1
net.params[key_bn][2].data[:] = 1
if num_bn_samples[0] == 0:
num_bn_samples[0] = 1
if net.params.has_key(key_scale):
print 'Combine {:s} + {:s} + {:s}'.format(key_conv, key_bn, key_scale)
scale_weight = copy_double(net.params[key_scale][0].data)
scale_bias = copy_double(net.params[key_scale][1].data)
net.params[key_scale][0].data[:] = 1
net.params[key_scale][1].data[:] = 0
else:
print 'Combine {:s} + {:s}'.format(key_conv, key_bn)
scale_weight = 1
scale_bias = 0
weight = copy_double(net.params[key_conv][0].data)
bias = copy_double(net.params[key_conv][1].data)
alpha = scale_weight / np.sqrt(bn_variance / num_bn_samples[0] + np.finfo(np.double).eps)
net.params[key_conv][1].data[:] = bias * alpha + (scale_bias - (bn_mean / num_bn_samples[0]) * alpha)
for i in range(len(alpha)):
net.params[key_conv][0].data[i] = weight[i] * alpha[i]
def merge_batchnorms_in_net(net):
# for each BN
for i, layer in enumerate(net.layers):
if layer.type != 'BatchNorm':
continue
l_name = net._layer_names[i]
l_bottom = net.bottom_names[l_name]
assert(len(l_bottom) == 1)
l_bottom = l_bottom[0]
l_top = net.top_names[l_name]
assert(len(l_top) == 1)
l_top = l_top[0]
can_be_absorbed = True
# Search all (bottom) layers
for j in xrange(i - 1, -1, -1):
tops_of_j = net.top_names[net._layer_names[j]]
if l_bottom in tops_of_j:
if net.layers[j].type not in ['Convolution', 'InnerProduct']:
can_be_absorbed = False
else:
# There must be only one layer
conv_ind = j
break
if not can_be_absorbed:
continue
# find the following Scale
scale_ind = None
for j in xrange(i + 1, len(net.layers)):
bottoms_of_j = net.bottom_names[net._layer_names[j]]
if l_top in bottoms_of_j:
if scale_ind:
# Followed by two or more layers
scale_ind = None
break
if net.layers[j].type in ['Scale']:
scale_ind = j
top_of_j = net.top_names[net._layer_names[j]][0]
if top_of_j == bottoms_of_j[0]:
# On-the-fly => Can be merged
break
else:
# Followed by a layer which is not 'Scale'
scale_ind = None
break
merge_conv_and_bn(net, conv_ind, i, scale_ind)
return net
def process_model(net, src_model, dst_model, func_loop, func_finally):
with open(src_model) as f:
model = caffe.proto.caffe_pb2.NetParameter()
pb.text_format.Merge(f.read(), model)
for i, layer in enumerate(model.layer):
map(lambda x: x(layer, net, model, i), func_loop)
map(lambda x: x(net, model), func_finally)
with open(dst_model, 'w') as f:
f.write(pb.text_format.MessageToString(model))
# Functions to remove (redundant) BN and Scale layers
to_delete_empty = []
def pick_empty_layers(layer, net, model, i):
if layer.type not in ['BatchNorm', 'Scale']:
return
bottom = layer.bottom[0]
top = layer.top[0]
if (bottom != top):
# Not supperted yet
return
if layer.type == 'BatchNorm':
zero_mean = np.all(net.params[layer.name][0].data == 0)
one_var = np.all(net.params[layer.name][1].data == 1)
#length_is_1 = (net.params['conv1_1/bn'][2].data == 1) or (net.params[layer.name][2].data == 0)
length_is_1 = (net.params[layer.name][2].data == 1)
if zero_mean and one_var and length_is_1:
print 'Delete layer: {}'.format(layer.name)
to_delete_empty.append(layer)
if layer.type == 'Scale':
no_scaling = np.all(net.params[layer.name][0].data == 1)
zero_bias = np.all(net.params[layer.name][1].data == 0)
if no_scaling and zero_bias:
print 'Delete layer: {}'.format(layer.name)
to_delete_empty.append(layer)
def remove_empty_layers(net, model):
map(model.layer.remove, to_delete_empty)
# A function to add 'engine: CAFFE' param into 1x1 convolutions
def set_engine_caffe(layer, net, model, i):
if layer.type == 'Convolution':
if layer.convolution_param.kernel_size == 1\
or (layer.convolution_param.kernel_h == layer.convolution_param.kernel_w == 1):
layer.convolution_param.engine = dict(layer.convolution_param.Engine.items())['CAFFE']
def main(args):
# Set default output file names
if args.output_model is None:
file_name = osp.splitext(args.model)[0]
args.output_model = file_name + '_inference.prototxt'
if args.output_weights is None:
file_name = osp.splitext(args.weights)[0]
args.output_weights = file_name + '_inference.caffemodel'
net = load_and_fill_biases(args.model, args.weights, args.model + '.temp.pt', None)
net = merge_batchnorms_in_net(net)
process_model(net, args.model + '.temp.pt', args.output_model,
[pick_empty_layers, set_engine_caffe],
[remove_empty_layers])
# Store params
net.save(args.output_weights)
if __name__ == '__main__':
parser = ArgumentParser(
description="Generate Batch Normalized model for inference")
parser.add_argument('model', help="The net definition prototxt")# 原模型文件
parser.add_argument('weights', help="The weights caffemodel") # 原权重文件
parser.add_argument('--output_model') # 去除BN层的模型文件
parser.add_argument('--output_weights')# 去除BN层后的权重文件
args = parser.parse_args()
main(args)