|
| 1 | +/* |
| 2 | +
|
| 3 | +Guess Number Game II |
| 4 | +
|
| 5 | +
|
| 6 | +
|
| 7 | +We are playing the Guess Game. The game is as follows: |
| 8 | +I pick a number from 1 to n. You have to guess which number I picked. |
| 9 | +Every time you guess wrong, I'll tell you whether the number I picked is higher or lower. |
| 10 | +However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked. |
| 11 | +
|
| 12 | +
|
| 13 | +Example |
| 14 | +
|
| 15 | +Given n = 10, I pick 8. |
| 16 | +First round: You guess 5, I tell you that it's higher. You pay $5. |
| 17 | +Second round: You guess 7, I tell you that it's higher. You pay $7. |
| 18 | +Third round: You guess 9, I tell you that it's lower. You pay $9. |
| 19 | +
|
| 20 | +Game over. 8 is the number I picked. |
| 21 | +You end up paying $5 + $7 + $9 = $21. |
| 22 | +
|
| 23 | +Given a particular n ≥ 1, find out how much money you need to have to guarantee a win. |
| 24 | +So when n = `10, return16` |
| 25 | +
|
| 26 | +
|
| 27 | +
|
| 28 | +解: |
| 29 | +Dynanmic Programming |
| 30 | +
|
| 31 | +递推公式: |
| 32 | +dp[i][j]表示从i到j中猜中任意数字的最小开销。 |
| 33 | +假设猜数字k,i<k<j,那么需要在i到k-1和k+1到j中继续猜。 |
| 34 | +依据minimax原理,对方可选择让我方开销最大的回答方式,故选择i到k-1和k+1到j中开销大的那个。 |
| 35 | +故猜k时的最小开销是: |
| 36 | +k + max(dp[i][k-1], dp[k+1][j]) |
| 37 | +
|
| 38 | +k可以取i到j,我方应当选择让自己开销最小的一个,故: |
| 39 | +dp[i][j] = min(k + max(dp[i][k-1], dp[k+1][j]),i<k<j) |
| 40 | +
|
| 41 | +
|
| 42 | +初始条件: |
| 43 | +由于每次需要用到i和j之间长度小于当前长度的dp值,所以应当按照长度递增来进行计算。 |
| 44 | +当i和j相等时,长度为1,猜中的开销为0。 |
| 45 | +故dp[i][i]=0。 |
| 46 | +
|
| 47 | +*/ |
| 48 | + |
| 49 | +public class Solution { |
| 50 | + /** |
| 51 | + * @param n an integer |
| 52 | + * @return how much money you need to have to guarantee a win |
| 53 | + */ |
| 54 | + public int getMoneyAmount(int n) { |
| 55 | + int[][] dp = new int[n + 1][n + 1]; |
| 56 | + |
| 57 | + for (int len = 2; len <= n; len++) { |
| 58 | + for (int i = 1; i <= n - len + 1; i++) { |
| 59 | + int min = Integer.MAX_VALUE; |
| 60 | + min = i + dp[i + 1][i + len - 1]; |
| 61 | + min = Math.min(min, i + len - 1 + dp[i][i + len - 2]); |
| 62 | + |
| 63 | + for (int j = i + 1; j < i + len - 1; j++) { |
| 64 | + min = Math.min(min, j + Math.max(dp[i][j - 1], dp[j + 1][i + len - 1])); |
| 65 | + } |
| 66 | + |
| 67 | + dp[i][i + len - 1] = min; |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + return dp[1][n]; |
| 72 | + } |
| 73 | +} |
0 commit comments