forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgsimp.ml
580 lines (526 loc) · 18.2 KB
/
algsimp.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
open Util
open Expr
let node_insert x = Assoctable.insert Expr.hash x
let node_lookup x = Assoctable.lookup Expr.hash (==) x
(*************************************************************
* Algebraic simplifier/elimination of common subexpressions
*************************************************************)
module AlgSimp : sig
val algsimp : expr list -> expr list
end = struct
open Monads.StateMonad
open Monads.MemoMonad
open Assoctable
let fetchSimp =
fetchState >>= fun (s, _) -> returnM s
let storeSimp s =
fetchState >>= (fun (_, c) -> storeState (s, c))
let lookupSimpM key =
fetchSimp >>= fun table ->
returnM (node_lookup key table)
let insertSimpM key value =
fetchSimp >>= fun table ->
storeSimp (node_insert key value table)
let subset a b =
List.for_all (fun x -> List.exists (fun y -> x == y) b) a
let structurallyEqualCSE a b =
match (a, b) with
| (Num a, Num b) -> Number.equal a b
| (NaN a, NaN b) -> a == b
| (Load a, Load b) -> Variable.same a b
| (Times (a, a'), Times (b, b')) ->
((a == b) && (a' == b')) ||
((a == b') && (a' == b))
| (CTimes (a, a'), CTimes (b, b')) ->
((a == b) && (a' == b')) ||
((a == b') && (a' == b))
| (CTimesJ (a, a'), CTimesJ (b, b')) -> ((a == b) && (a' == b'))
| (Plus a, Plus b) -> subset a b && subset b a
| (Uminus a, Uminus b) -> (a == b)
| _ -> false
let hashCSE x =
if (!Magic.randomized_cse) then
Oracle.hash x
else
Expr.hash x
let equalCSE a b =
if (!Magic.randomized_cse) then
(structurallyEqualCSE a b || Oracle.likely_equal a b)
else
structurallyEqualCSE a b
let fetchCSE =
fetchState >>= fun (_, c) -> returnM c
let storeCSE c =
fetchState >>= (fun (s, _) -> storeState (s, c))
let lookupCSEM key =
fetchCSE >>= fun table ->
returnM (Assoctable.lookup hashCSE equalCSE key table)
let insertCSEM key value =
fetchCSE >>= fun table ->
storeCSE (Assoctable.insert hashCSE key value table)
(* memoize both x and Uminus x (unless x is already negated) *)
let identityM x =
let memo x = memoizing lookupCSEM insertCSEM returnM x in
match x with
Uminus _ -> memo x
| _ -> memo x >>= fun x' -> memo (Uminus x') >> returnM x'
let makeNode = identityM
(* simplifiers for various kinds of nodes *)
let rec snumM = function
n when Number.is_zero n ->
makeNode (Num (Number.zero))
| n when Number.negative n ->
makeNode (Num (Number.negate n)) >>= suminusM
| n -> makeNode (Num n)
and suminusM = function
Uminus x -> makeNode x
| Num a when (Number.is_zero a) -> snumM Number.zero
| a -> makeNode (Uminus a)
and stimesM = function
| (Uminus a, b) -> stimesM (a, b) >>= suminusM
| (a, Uminus b) -> stimesM (a, b) >>= suminusM
| (NaN I, CTimes (a, b)) -> stimesM (NaN I, b) >>=
fun ib -> sctimesM (a, ib)
| (NaN I, CTimesJ (a, b)) -> stimesM (NaN I, b) >>=
fun ib -> sctimesjM (a, ib)
| (Num a, Num b) -> snumM (Number.mul a b)
| (Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x -> stimesM (x, c)
| (Num a, b) when Number.is_zero a -> snumM Number.zero
| (Num a, b) when Number.is_one a -> makeNode b
| (Num a, b) when Number.is_mone a -> suminusM b
| (a, b) when is_known_constant b && not (is_known_constant a) ->
stimesM (b, a)
| (a, b) -> makeNode (Times (a, b))
and sctimesM = function
| (Uminus a, b) -> sctimesM (a, b) >>= suminusM
| (a, Uminus b) -> sctimesM (a, b) >>= suminusM
| (a, b) -> makeNode (CTimes (a, b))
and sctimesjM = function
| (Uminus a, b) -> sctimesjM (a, b) >>= suminusM
| (a, Uminus b) -> sctimesjM (a, b) >>= suminusM
| (a, b) -> makeNode (CTimesJ (a, b))
and reduce_sumM x = match x with
[] -> returnM []
| [Num a] ->
if (Number.is_zero a) then
returnM []
else returnM x
| [Uminus (Num a)] ->
if (Number.is_zero a) then
returnM []
else returnM x
| (Num a) :: (Num b) :: s ->
snumM (Number.add a b) >>= fun x ->
reduce_sumM (x :: s)
| (Num a) :: (Uminus (Num b)) :: s ->
snumM (Number.sub a b) >>= fun x ->
reduce_sumM (x :: s)
| (Uminus (Num a)) :: (Num b) :: s ->
snumM (Number.sub b a) >>= fun x ->
reduce_sumM (x :: s)
| (Uminus (Num a)) :: (Uminus (Num b)) :: s ->
snumM (Number.add a b) >>=
suminusM >>= fun x ->
reduce_sumM (x :: s)
| ((Num _) as a) :: b :: s -> reduce_sumM (b :: a :: s)
| ((Uminus (Num _)) as a) :: b :: s -> reduce_sumM (b :: a :: s)
| a :: s ->
reduce_sumM s >>= fun s' -> returnM (a :: s')
and collectible1 = function
| NaN _ -> false
| Uminus x -> collectible1 x
| _ -> true
and collectible (a, b) = collectible1 a
(* collect common factors: ax + bx -> (a+b)x *)
and collectM which x =
let rec findCoeffM which = function
| Times (a, b) when collectible (which (a, b)) -> returnM (which (a, b))
| Uminus x ->
findCoeffM which x >>= fun (coeff, b) ->
suminusM coeff >>= fun mcoeff ->
returnM (mcoeff, b)
| x -> snumM Number.one >>= fun one -> returnM (one, x)
and separateM xpr = function
[] -> returnM ([], [])
| a :: b ->
separateM xpr b >>= fun (w, wo) ->
(* try first factor *)
findCoeffM (fun (a, b) -> (a, b)) a >>= fun (c, x) ->
if (xpr == x) && collectible (c, x) then returnM (c :: w, wo)
else
(* try second factor *)
findCoeffM (fun (a, b) -> (b, a)) a >>= fun (c, x) ->
if (xpr == x) && collectible (c, x) then returnM (c :: w, wo)
else returnM (w, a :: wo)
in match x with
[] -> returnM x
| [a] -> returnM x
| a :: b ->
findCoeffM which a >>= fun (_, xpr) ->
separateM xpr x >>= fun (w, wo) ->
collectM which wo >>= fun wo' ->
splusM w >>= fun w' ->
stimesM (w', xpr) >>= fun t' ->
returnM (t':: wo')
and mangleSumM x = returnM x
>>= reduce_sumM
>>= collectM (fun (a, b) -> (a, b))
>>= collectM (fun (a, b) -> (b, a))
>>= reduce_sumM
>>= deepCollectM !Magic.deep_collect_depth
>>= reduce_sumM
and reorder_uminus = function (* push all Uminuses to the end *)
[] -> []
| ((Uminus _) as a' :: b) -> (reorder_uminus b) @ [a']
| (a :: b) -> a :: (reorder_uminus b)
and canonicalizeM = function
[] -> snumM Number.zero
| [a] -> makeNode a (* one term *)
| a -> generateFusedMultAddM (reorder_uminus a)
and generateFusedMultAddM =
let rec is_multiplication = function
| Times (Num a, b) -> true
| Uminus (Times (Num a, b)) -> true
| _ -> false
and separate = function
[] -> ([], [], Number.zero)
| (Times (Num a, b)) as this :: c ->
let (x, y, max) = separate c in
let newmax = if (Number.greater a max) then a else max in
(this :: x, y, newmax)
| (Uminus (Times (Num a, b))) as this :: c ->
let (x, y, max) = separate c in
let newmax = if (Number.greater a max) then a else max in
(this :: x, y, newmax)
| this :: c ->
let (x, y, max) = separate c in
(x, this :: y, max)
in fun l ->
if !Magic.enable_fma && count is_multiplication l >= 2 then
let (w, wo, max) = separate l in
snumM (Number.div Number.one max) >>= fun invmax' ->
snumM max >>= fun max' ->
mapM (fun x -> stimesM (invmax', x)) w >>= splusM >>= fun pw' ->
stimesM (max', pw') >>= fun mw' ->
splusM (wo @ [mw'])
else
makeNode (Plus l)
and negative = function
Uminus _ -> true
| _ -> false
(*
* simplify patterns of the form
*
* ((c_1 * a + ...) + ...) + (c_2 * a + ...)
*
* The pattern includes arbitrary coefficients and minus signs.
* A common case of this pattern is the butterfly
* (a + b) + (a - b)
* (a + b) - (a - b)
*)
(* this whole procedure needs much more thought *)
and deepCollectM maxdepth l =
let rec findTerms depth x = match x with
| Uminus x -> findTerms depth x
| Times (Num _, b) -> (findTerms (depth - 1) b)
| Plus l when depth > 0 ->
x :: List.flatten (List.map (findTerms (depth - 1)) l)
| x -> [x]
and duplicates = function
[] -> []
| a :: b -> if List.memq a b then a :: duplicates b
else duplicates b
in let rec splitDuplicates depth d x =
if (List.memq x d) then
snumM (Number.zero) >>= fun zero ->
returnM (zero, x)
else match x with
| Times (a, b) ->
splitDuplicates (depth - 1) d a >>= fun (a', xa) ->
splitDuplicates (depth - 1) d b >>= fun (b', xb) ->
stimesM (a', b') >>= fun ab ->
stimesM (a, xb) >>= fun xb' ->
stimesM (xa, b) >>= fun xa' ->
stimesM (xa, xb) >>= fun xab ->
splusM [xa'; xb'; xab] >>= fun x ->
returnM (ab, x)
| Uminus a ->
splitDuplicates depth d a >>= fun (x, y) ->
suminusM x >>= fun ux ->
suminusM y >>= fun uy ->
returnM (ux, uy)
| Plus l when depth > 0 ->
mapM (splitDuplicates (depth - 1) d) l >>= fun ld ->
let (l', d') = List.split ld in
splusM l' >>= fun p ->
splusM d' >>= fun d'' ->
returnM (p, d'')
| x ->
snumM (Number.zero) >>= fun zero' ->
returnM (x, zero')
in let l' = List.flatten (List.map (findTerms maxdepth) l)
in match duplicates l' with
| [] -> returnM l
| d ->
mapM (splitDuplicates maxdepth d) l >>= fun ld ->
let (l', d') = List.split ld in
splusM l' >>= fun l'' ->
let rec flattenPlusM = function
| Plus l -> returnM l
| Uminus x ->
flattenPlusM x >>= mapM suminusM
| x -> returnM [x]
in
mapM flattenPlusM d' >>= fun d'' ->
splusM (List.flatten d'') >>= fun d''' ->
mangleSumM [l''; d''']
and splusM l =
let fma_heuristics x =
if !Magic.enable_fma then
match x with
| [Uminus (Times _); Times _] -> Some false
| [Times _; Uminus (Times _)] -> Some false
| [Uminus (_); Times _] -> Some true
| [Times _; Uminus (Plus _)] -> Some true
| [_; Uminus (Times _)] -> Some false
| [Uminus (Times _); _] -> Some false
| _ -> None
else
None
in
mangleSumM l >>= fun l' ->
(* no terms are negative. Don't do anything *)
if not (List.exists negative l') then
canonicalizeM l'
(* all terms are negative. Negate them all and collect the minus sign *)
else if List.for_all negative l' then
mapM suminusM l' >>= splusM >>= suminusM
else match fma_heuristics l' with
| Some true -> mapM suminusM l' >>= splusM >>= suminusM
| Some false -> canonicalizeM l'
| None ->
(* Ask the Oracle for the canonical form *)
if (not !Magic.randomized_cse) &&
Oracle.should_flip_sign (Plus l') then
mapM suminusM l' >>= splusM >>= suminusM
else
canonicalizeM l'
(* monadic style algebraic simplifier for the dag *)
let rec algsimpM x =
memoizing lookupSimpM insertSimpM
(function
| Num a -> snumM a
| NaN _ as x -> makeNode x
| Plus a ->
mapM algsimpM a >>= splusM
| Times (a, b) ->
(algsimpM a >>= fun a' ->
algsimpM b >>= fun b' ->
stimesM (a', b'))
| CTimes (a, b) ->
(algsimpM a >>= fun a' ->
algsimpM b >>= fun b' ->
sctimesM (a', b'))
| CTimesJ (a, b) ->
(algsimpM a >>= fun a' ->
algsimpM b >>= fun b' ->
sctimesjM (a', b'))
| Uminus a ->
algsimpM a >>= suminusM
| Store (v, a) ->
algsimpM a >>= fun a' ->
makeNode (Store (v, a'))
| Load _ as x -> makeNode x)
x
let initialTable = (empty, empty)
let simp_roots = mapM algsimpM
let algsimp = runM initialTable simp_roots
end
(*************************************************************
* Network transposition algorithm
*************************************************************)
module Transpose = struct
open Monads.StateMonad
open Monads.MemoMonad
open Littlesimp
let fetchDuals = fetchState
let storeDuals = storeState
let lookupDualsM key =
fetchDuals >>= fun table ->
returnM (node_lookup key table)
let insertDualsM key value =
fetchDuals >>= fun table ->
storeDuals (node_insert key value table)
let rec visit visited vtable parent_table = function
[] -> (visited, parent_table)
| node :: rest ->
match node_lookup node vtable with
| Some _ -> visit visited vtable parent_table rest
| None ->
let children = match node with
| Store (v, n) -> [n]
| Plus l -> l
| Times (a, b) -> [a; b]
| CTimes (a, b) -> [a; b]
| CTimesJ (a, b) -> [a; b]
| Uminus x -> [x]
| _ -> []
in let rec loop t = function
[] -> t
| a :: rest ->
(match node_lookup a t with
None -> loop (node_insert a [node] t) rest
| Some c -> loop (node_insert a (node :: c) t) rest)
in
(visit
(node :: visited)
(node_insert node () vtable)
(loop parent_table children)
(children @ rest))
let make_transposer parent_table =
let rec termM node candidate_parent =
match candidate_parent with
| Store (_, n) when n == node ->
dualM candidate_parent >>= fun x' -> returnM [x']
| Plus (l) when List.memq node l ->
dualM candidate_parent >>= fun x' -> returnM [x']
| Times (a, b) when b == node ->
dualM candidate_parent >>= fun x' ->
returnM [makeTimes (a, x')]
| CTimes (a, b) when b == node ->
dualM candidate_parent >>= fun x' ->
returnM [CTimes (a, x')]
| CTimesJ (a, b) when b == node ->
dualM candidate_parent >>= fun x' ->
returnM [CTimesJ (a, x')]
| Uminus n when n == node ->
dualM candidate_parent >>= fun x' ->
returnM [makeUminus x']
| _ -> returnM []
and dualExpressionM this_node =
mapM (termM this_node)
(match node_lookup this_node parent_table with
| Some a -> a
| None -> failwith "bug in dualExpressionM"
) >>= fun l ->
returnM (makePlus (List.flatten l))
and dualM this_node =
memoizing lookupDualsM insertDualsM
(function
| Load v as x ->
if (Variable.is_constant v) then
returnM (Load v)
else
(dualExpressionM x >>= fun d ->
returnM (Store (v, d)))
| Store (v, x) -> returnM (Load v)
| x -> dualExpressionM x)
this_node
in dualM
let is_store = function
| Store _ -> true
| _ -> false
let transpose dag =
let _ = Util.info "begin transpose" in
let (all_nodes, parent_table) =
visit [] Assoctable.empty Assoctable.empty dag in
let transposerM = make_transposer parent_table in
let mapTransposerM = mapM transposerM in
let duals = runM Assoctable.empty mapTransposerM all_nodes in
let roots = List.filter is_store duals in
let _ = Util.info "end transpose" in
roots
end
(*************************************************************
* Various dag statistics
*************************************************************)
module Stats : sig
type complexity
val complexity : Expr.expr list -> complexity
val same_complexity : complexity -> complexity -> bool
val leq_complexity : complexity -> complexity -> bool
val to_string : complexity -> string
end = struct
type complexity = int * int * int * int * int * int
let rec visit visited vtable = function
[] -> visited
| node :: rest ->
match node_lookup node vtable with
Some _ -> visit visited vtable rest
| None ->
let children = match node with
Store (v, n) -> [n]
| Plus l -> l
| Times (a, b) -> [a; b]
| Uminus x -> [x]
| _ -> []
in visit (node :: visited)
(node_insert node () vtable)
(children @ rest)
let complexity dag =
let rec loop (load, store, plus, times, uminus, num) = function
[] -> (load, store, plus, times, uminus, num)
| node :: rest ->
loop
(match node with
| Load _ -> (load + 1, store, plus, times, uminus, num)
| Store _ -> (load, store + 1, plus, times, uminus, num)
| Plus x -> (load, store, plus + (List.length x - 1), times, uminus, num)
| Times _ -> (load, store, plus, times + 1, uminus, num)
| Uminus _ -> (load, store, plus, times, uminus + 1, num)
| Num _ -> (load, store, plus, times, uminus, num + 1)
| CTimes _ -> (load, store, plus, times, uminus, num)
| CTimesJ _ -> (load, store, plus, times, uminus, num)
| NaN _ -> (load, store, plus, times, uminus, num))
rest
in let (l, s, p, t, u, n) =
loop (0, 0, 0, 0, 0, 0) (visit [] Assoctable.empty dag)
in (l, s, p, t, u, n)
let weight (l, s, p, t, u, n) =
l + s + 10 * p + 20 * t + u + n
let same_complexity a b = weight a = weight b
let leq_complexity a b = weight a <= weight b
let to_string (l, s, p, t, u, n) =
Printf.sprintf "ld=%d st=%d add=%d mul=%d uminus=%d num=%d\n"
l s p t u n
end
(* simplify the dag *)
let algsimp v =
let rec simplification_loop v =
let () = Util.info "simplification step" in
let complexity = Stats.complexity v in
let () = Util.info ("complexity = " ^ (Stats.to_string complexity)) in
let v = (AlgSimp.algsimp @@ Transpose.transpose @@
AlgSimp.algsimp @@ Transpose.transpose) v in
let complexity' = Stats.complexity v in
let () = Util.info ("complexity = " ^ (Stats.to_string complexity')) in
if (Stats.leq_complexity complexity' complexity) then
let () = Util.info "end algsimp" in
v
else
simplification_loop v
in
let () = Util.info "begin algsimp" in
let v = AlgSimp.algsimp v in
if !Magic.network_transposition then simplification_loop v else v