forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock.c
131 lines (117 loc) · 3.8 KB
/
block.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "ifftw-mpi.h"
INT XM(num_blocks)(INT n, INT block)
{
return (n + block - 1) / block;
}
int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm)
{
int n_pes;
MPI_Comm_size(comm, &n_pes);
return n_pes >= XM(num_blocks)(n, block);
}
/* Pick a default block size for dividing a problem of size n among
n_pes processes. Divide as equally as possible, while minimizing
the maximum block size among the processes as well as the number of
processes with nonzero blocks. */
INT XM(default_block)(INT n, int n_pes)
{
return ((n + n_pes - 1) / n_pes);
}
/* For a given block size and dimension n, compute the block size
on the given process. */
INT XM(block)(INT n, INT block, int which_block)
{
INT d = n - which_block * block;
return d <= 0 ? 0 : (d > block ? block : d);
}
static INT num_blocks_kind(const ddim *dim, block_kind k)
{
return XM(num_blocks)(dim->n, dim->b[k]);
}
INT XM(num_blocks_total)(const dtensor *sz, block_kind k)
{
if (FINITE_RNK(sz->rnk)) {
int i;
INT ntot = 1;
for (i = 0; i < sz->rnk; ++i)
ntot *= num_blocks_kind(sz->dims + i, k);
return ntot;
}
else
return 0;
}
int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe)
{
return (which_pe >= XM(num_blocks_total)(sz, k));
}
/* Given a non-idle process which_pe, computes the coordinate
vector coords[rnk] giving the coordinates of a block in the
matrix of blocks. k specifies whether we are talking about
the input or output data distribution. */
void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe,
INT *coords)
{
int i;
A(!XM(idle_process)(sz, k, which_pe) && FINITE_RNK(sz->rnk));
for (i = sz->rnk - 1; i >= 0; --i) {
INT nb = num_blocks_kind(sz->dims + i, k);
coords[i] = which_pe % nb;
which_pe /= nb;
}
}
INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe)
{
if (XM(idle_process)(sz, k, which_pe))
return 0;
else {
int i;
INT N = 1, *coords;
STACK_MALLOC(INT*, coords, sizeof(INT) * sz->rnk);
XM(block_coords)(sz, k, which_pe, coords);
for (i = 0; i < sz->rnk; ++i)
N *= XM(block)(sz->dims[i].n, sz->dims[i].b[k], coords[i]);
STACK_FREE(coords);
return N;
}
}
/* returns whether sz is local for dims >= dim */
int XM(is_local_after)(int dim, const dtensor *sz, block_kind k)
{
if (FINITE_RNK(sz->rnk))
for (; dim < sz->rnk; ++dim)
if (XM(num_blocks)(sz->dims[dim].n, sz->dims[dim].b[k]) > 1)
return 0;
return 1;
}
int XM(is_local)(const dtensor *sz, block_kind k)
{
return XM(is_local_after)(0, sz, k);
}
/* Return whether sz is distributed for k according to a simple
1d block distribution in the first or second dimensions */
int XM(is_block1d)(const dtensor *sz, block_kind k)
{
int i;
if (!FINITE_RNK(sz->rnk)) return 0;
for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ;
return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k));
}