-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcam_demo.py
205 lines (166 loc) · 6.28 KB
/
cam_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
from darknet import Darknet
from preprocess import prep_image, inp_to_image
import pandas as pd
import random
import argparse
import pickle as pkl
import time
import multiprocessing as mp
import winsound
def get_test_input(input_dim, CUDA):
img = cv2.imread("imgs/messi.jpg")
img = cv2.resize(img, (input_dim, input_dim))
img_ = img[:, :, ::-1].transpose((2, 0, 1))
img_ = img_[np.newaxis, :, :, :] / 255.0
img_ = torch.from_numpy(img_).float()
img_ = Variable(img_)
if CUDA:
img_ = img_.cuda()
return img_
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Variable
"""
orig_im = img
dim = orig_im.shape[1], orig_im.shape[0]
img = cv2.resize(orig_im, (inp_dim, inp_dim))
img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy()
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
return img_, orig_im, dim
def write(classes, colors, x, img):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
cls = int(x[-1])
if (cls == 1 or cls == 0):
label = "{0}".format(classes[cls])
# color = random.choice(colors)
cv2.rectangle(img, c1, c2, colors[cls], 1)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2, colors[cls], -1)
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225, 255, 255], 1);
return img
return
def write1(x,img):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
cls = int(x[-1])
m = 0
#发现有显示7 先暂时排除
if(cls == 7):
return
if(cls == 1):
m = 1
return m
def arg_parse():
"""
Parse arguements to the detect module
"""
parser = argparse.ArgumentParser(description='YOLO v3 Cam Demo')
parser.add_argument("--confidence", dest="confidence", help="Object Confidence to filter predictions", default=0.25)
parser.add_argument("--nms_thresh", dest="nms_thresh", help="NMS Threshhold", default=0.4)
parser.add_argument("--reso", dest='reso', help=
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
default="160", type=str)
parser.add_argument("--weights_path", dest='weights_path', type=str, default="checkpoints/yolov3_ckpt_4.pth",
help="path to weights file")
parser.add_argument("--cfg", dest='cfgfile', help="Config file", default="config/yolov3-custom.cfg", type=str)
return parser.parse_args()
def image_put(q, user, pwd, ip, channel=1):
# 根据摄像头设置IP及rtsp端口
url = 'rtsp://admin:[email protected]:554/11'
start = 0
frames = 0
# 读取视频流
cap = cv2.VideoCapture(0)
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320)
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)
# cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G'))
cap.set(cv2.CAP_PROP_FPS,30)
while True:
is_opened, frame = cap.read()
q.put(frame) if is_opened else None
q.get() if q.qsize() > 1 else None
def image_get(q, window_name):
cfgfile = "cfg/yolov3.cfg"
weightsfile = "yolov3.weights"
timeF = 20
k = 0
n = 0 # 计数
frames = 0
i = 0
start = 0
start = time.time()
args = arg_parse()
confidence = float(args.confidence)
nms_thesh = float(args.nms_thresh)
CUDA = torch.cuda.is_available()
num_classes = 2
bbox_attrs = 5 + num_classes
model = Darknet(args.cfgfile)
if args.weights_path.endswith(".weights"):
# Load darknet weights
model.load_darknet_weights(args.weights_path)
else:
# Load checkpoint weights
model.load_state_dict(torch.load(args.weights_path))
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
if CUDA:
model.cuda()
model.eval()
cv2.namedWindow(window_name, flags=cv2.WINDOW_FREERATIO)
while True:
frame = q.get()
img, orig_im, dim = prep_image(frame, inp_dim)
im_dim = torch.FloatTensor(dim).repeat(1, 2)
if CUDA:
im_dim = im_dim.cuda()
img = img.cuda()
output = model(Variable(img), CUDA)
output = write_results(output, confidence, num_classes, nms=True, nms_conf=nms_thesh)
output[:, 1:5] = torch.clamp(output[:, 1:5], 0.0, float(inp_dim)) / inp_dim
# im_dim = im_dim.repeat(output.size(0), 1)
output[:, [1, 3]] *= frame.shape[1]
output[:, [2, 4]] *= frame.shape[0]
classes = load_classes('data/classes.names')
colors = pkl.load(open("pallete", "rb"))
list(map(lambda x: write(classes, colors, x, orig_im), output))
list1 = list(map(lambda x: write1(x, orig_im), output))
cv2.imshow(window_name, orig_im)#显示视频
cv2.waitKey(1)
frames += 1
print("FPS of the video is {:5.2f}".format( frames / (time.time() - start)))
n = n + 1
i += 1
if (n % timeF == 0): # 每隔timeF帧进行存储操作
for j in range(0, len(list1)):
if list1[j] == 1:
k = k + 1
if list1[j] == 0:
k = 0
if k != 0:
cv2.imwrite('camera/{}.jpg'.format(i), orig_im) # 当识别到未带安全帽时存储为图像
# winsound.Beep(600, 1000) # 当识别到未带安全帽时,调用蜂鸣器
def run_single_camera():
# user_name, user_pwd, camera_ip = "admin", "admin123456", "172.20.114.196"
user_name, user_pwd, camera_ip = "admin", "admin123456", "[fe80::3aaf:29ff:fed3:d260]"
mp.set_start_method(method='spawn') # init
queue = mp.Queue(maxsize=2)
processes = [mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip)),
mp.Process(target=image_get, args=(queue, camera_ip))]
[process.start() for process in processes]
[process.join() for process in processes]
if __name__ == '__main__':
run_single_camera()