forked from CoNLL-UD-2018/UDPipe-Future
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathud_parser.py
469 lines (409 loc) · 28.9 KB
/
ud_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/env python3
import numpy as np
import tensorflow as tf
import dependency_decoding
import conll18_ud_eval
import ud_dataset
class Network:
METRICS = ["UPOS", "XPOS", "UFeats", "AllTags", "Lemmas", "UAS", "LAS", "CLAS", "MLAS", "BLEX"]
def __init__(self, threads, seed=42):
# Create an empty graph and a session
graph = tf.Graph()
graph.seed = seed
self.session = tf.Session(graph = graph, config=tf.ConfigProto(inter_op_parallelism_threads=threads,
intra_op_parallelism_threads=threads,
allow_soft_placement=True))
def construct(self, args, num_words, num_chars, num_tags, num_deprels, predict_only):
with self.session.graph.as_default():
# Inputs
self.sentence_lens = tf.placeholder(tf.int32, [None])
self.word_ids = tf.placeholder(tf.int32, [None, None])
self.charseqs = tf.placeholder(tf.int32, [None, None])
self.charseq_lens = tf.placeholder(tf.int32, [None])
self.charseq_ids = tf.placeholder(tf.int32, [None, None])
if args.embeddings: self.embeddings = tf.placeholder(tf.float32, [None, None, args.embeddings_size])
if args.elmo_size: self.elmo = tf.placeholder(tf.float32, [None, None, args.elmo_size])
self.tags = dict((tag, tf.placeholder(tf.int32, [None, None])) for tag in args.tags)
self.heads = tf.placeholder(tf.int32, [None, None])
self.deprels = tf.placeholder(tf.int32, [None, None])
self.is_training = tf.placeholder(tf.bool, [])
self.learning_rate = tf.placeholder(tf.float32, [])
# RNN Cell
if args.rnn_cell == "LSTM":
rnn_cell = tf.nn.rnn_cell.LSTMCell
elif args.rnn_cell == "GRU":
rnn_cell = tf.nn.rnn_cell.GRUCell
else:
raise ValueError("Unknown rnn_cell {}".format(args.rnn_cell))
# Word embeddings
inputs = []
if args.we_dim:
word_embeddings = tf.get_variable("word_embeddings", shape=[num_words, args.we_dim], dtype=tf.float32)
inputs.append(tf.nn.embedding_lookup(word_embeddings, self.word_ids))
# Character-level embeddings
character_embeddings = tf.get_variable("character_embeddings", shape=[num_chars, args.cle_dim], dtype=tf.float32)
characters_embedded = tf.nn.embedding_lookup(character_embeddings, self.charseqs)
characters_embedded = tf.layers.dropout(characters_embedded, rate=args.dropout, training=self.is_training)
_, (state_fwd, state_bwd) = tf.nn.bidirectional_dynamic_rnn(
tf.nn.rnn_cell.GRUCell(args.cle_dim), tf.nn.rnn_cell.GRUCell(args.cle_dim),
characters_embedded, sequence_length=self.charseq_lens, dtype=tf.float32)
cle = tf.concat([state_fwd, state_bwd], axis=1)
cle_inputs = tf.nn.embedding_lookup(cle, self.charseq_ids)
# If CLE dim is half WE dim, we add them together, which gives
# better results; otherwise we concatenate CLE and WE.
if 2 * args.cle_dim == args.we_dim:
inputs[-1] += cle_inputs
else:
inputs.append(cle_inputs)
# Pretrained embeddings
if args.embeddings:
inputs.append(self.embeddings)
# Contextualized embeddings
if args.elmo_size:
inputs.append(self.elmo)
# All inputs done
inputs = tf.concat(inputs, axis=2)
# Shared RNN layers
hidden_layer = tf.layers.dropout(inputs, rate=args.dropout, training=self.is_training)
for i in range(args.rnn_layers):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
hidden_layer, sequence_length=self.sentence_lens + 1, dtype=tf.float32,
scope="word-level-rnn-{}".format(i))
previous = hidden_layer
hidden_layer = tf.layers.dropout(hidden_layer_fwd + hidden_layer_bwd, rate=args.dropout, training=self.is_training)
if i: hidden_layer += previous
# Tagger
loss = 0
weights = tf.sequence_mask(self.sentence_lens, dtype=tf.float32)
weights_sum = tf.reduce_sum(weights)
self.predictions = {}
tag_hidden_layer = hidden_layer[:, 1:]
for i in range(args.rnn_layers_tagger):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
tag_hidden_layer, sequence_length=self.sentence_lens, dtype=tf.float32,
scope="word-level-rnn-tag-{}".format(i))
previous = tag_hidden_layer
tag_hidden_layer = tf.layers.dropout(hidden_layer_fwd + hidden_layer_bwd, rate=args.dropout, training=self.is_training)
if i: tag_hidden_layer += previous
for tag in args.tags:
tag_layer = tag_hidden_layer
for _ in range(args.tag_layers):
tag_layer += tf.layers.dropout(tf.layers.dense(tag_layer, args.rnn_cell_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
if tag == "LEMMAS": tag_layer = tf.concat([tag_layer, cle_inputs[:, 1:]], axis=2)
output_layer = tf.layers.dense(tag_layer, num_tags[tag])
self.predictions[tag] = tf.argmax(output_layer, axis=2, output_type=tf.int32)
if args.label_smoothing:
gold_labels = tf.one_hot(self.tags[tag], num_tags[tag]) * (1 - args.label_smoothing) + args.label_smoothing / num_tags[tag]
loss += tf.losses.softmax_cross_entropy(gold_labels, output_layer, weights=weights)
else:
loss += tf.losses.sparse_softmax_cross_entropy(self.tags[tag], output_layer, weights=weights)
# Parsing
if args.parse:
max_words = tf.reduce_max(self.sentence_lens)
if args.rnn_layers == 0:
parser_inputs = [inputs]
for tag in ["UPOS", "XPOS", "FEATS"]:
parser_inputs.append(tf.nn.embedding_lookup(tf.get_variable(tag + "_embeddings", shape=[num_tags[tag], 128], dtype=tf.float32),
tf.pad(self.predictions[tag], ((0, 0),(1, 0)), constant_values=2)))
parser_inputs = tf.concat(parser_inputs, axis=2)
hidden_layer = tf.layers.dropout(parser_inputs, rate=args.dropout, training=self.is_training)
for i in range(args.rnn_layers_parser):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
hidden_layer, sequence_length=self.sentence_lens + 1, dtype=tf.float32,
scope="word-level-rnn-parser-{}".format(i))
previous = hidden_layer
hidden_layer = tf.layers.dropout(hidden_layer_fwd + hidden_layer_bwd, rate=args.dropout, training=self.is_training)
if i: hidden_layer += previous
# Heads
head_deps = hidden_layer[:, 1:]
for _ in range(args.parser_layers):
head_deps += tf.layers.dropout(tf.layers.dense(head_deps, args.rnn_cell_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
head_roots = hidden_layer
for _ in range(args.parser_layers):
head_roots += tf.layers.dropout(tf.layers.dense(head_roots, args.rnn_cell_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
head_deps_bias = tf.get_variable("head_deps_bias", [args.rnn_cell_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
head_roots_bias = tf.get_variable("head_roots_bias", [args.rnn_cell_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
head_biaffine = tf.get_variable("head_biaffine", [args.rnn_cell_dim, args.rnn_cell_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
heads = tf.reshape(tf.matmul(tf.reshape(head_deps, [-1, args.rnn_cell_dim]) + head_deps_bias, head_biaffine),
[tf.shape(hidden_layer)[0], -1, args.rnn_cell_dim])
heads = tf.matmul(heads, head_roots + head_roots_bias, transpose_b=True)
self.heads_logs = tf.nn.log_softmax(heads)
if args.label_smoothing:
gold_labels = tf.one_hot(self.heads, max_words + 1) * (1 - args.label_smoothing)
gold_labels += args.label_smoothing / tf.to_float(max_words + 1)
loss += tf.losses.softmax_cross_entropy(gold_labels, heads, weights=weights)
else:
loss += tf.losses.sparse_softmax_cross_entropy(self.heads, heads, weights=weights)
# Deprels
self.deprel_hidden_layer = tf.identity(hidden_layer)
self.deprel_heads = tf.identity(self.heads)
deprel_deps = tf.layers.dropout(tf.layers.dense(self.deprel_hidden_layer[:, 1:], args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
for _ in range(args.parser_layers - 1):
deprel_deps += tf.layers.dropout(tf.layers.dense(deprel_deps, args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
deprel_indices = tf.stack([
tf.tile(tf.expand_dims(tf.range(tf.shape(self.deprel_heads)[0]), axis=1), multiples=[1, tf.shape(self.deprel_heads)[1]]),
self.deprel_heads], axis=2)
deprel_roots = tf.gather_nd(self.deprel_hidden_layer, deprel_indices, )
deprel_roots = tf.layers.dropout(tf.layers.dense(deprel_roots, args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
for _ in range(args.parser_layers - 1):
deprel_roots += tf.layers.dropout(tf.layers.dense(deprel_roots, args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
deprel_deps_bias = tf.get_variable("deprel_deps_bias", [args.parser_deprel_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
deprel_roots_bias = tf.get_variable("deprel_roots_bias", [args.parser_deprel_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
deprel_biaffine = tf.get_variable("deprel_biaffine", [args.parser_deprel_dim, num_deprels * args.parser_deprel_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
deprels = tf.reshape(tf.matmul(tf.reshape(deprel_deps, [-1, args.parser_deprel_dim]) + deprel_deps_bias, deprel_biaffine),
[tf.shape(self.deprel_hidden_layer)[0], -1, num_deprels, args.parser_deprel_dim])
deprels = tf.squeeze(tf.matmul(deprels, tf.expand_dims(deprel_roots + deprel_roots_bias, axis=3)), axis=3)
self.predictions_deprel = tf.argmax(deprels, axis=2, output_type=tf.int32)
if args.label_smoothing:
gold_labels = tf.one_hot(self.deprels, num_deprels) * (1 - args.label_smoothing)
gold_labels += args.label_smoothing / num_deprels
loss += tf.losses.softmax_cross_entropy(gold_labels, deprels, weights=weights)
else:
loss += tf.losses.sparse_softmax_cross_entropy(self.deprels, deprels, weights=weights)
# Pretrain saver
self.saver_inference = tf.train.Saver(max_to_keep=1)
if predict_only: return
# Training
self.global_step = tf.train.create_global_step()
self.training = tf.contrib.opt.LazyAdamOptimizer(learning_rate=self.learning_rate, beta2=args.beta_2).minimize(loss, global_step=self.global_step)
# Train saver
self.saver_train = tf.train.Saver(max_to_keep=2)
# Summaries
summary_writer = tf.contrib.summary.create_file_writer(args.logdir, flush_millis=10 * 1000)
self.summaries = {}
with summary_writer.as_default(), tf.contrib.summary.record_summaries_every_n_global_steps(100):
self.summaries["train"] = [
tf.contrib.summary.scalar("train/loss", loss),
tf.contrib.summary.scalar("train/lr", self.learning_rate)]
for tag in args.tags:
self.summaries["train"].append(tf.contrib.summary.scalar(
"train/{}".format(tag),
tf.reduce_sum(tf.cast(tf.equal(self.tags[tag], self.predictions[tag]), tf.float32) * weights) /
weights_sum))
if args.parse:
heads_acc = tf.reduce_sum(tf.cast(tf.equal(self.heads, tf.argmax(heads, axis=-1, output_type=tf.int32)),
tf.float32) * weights) / weights_sum
self.summaries["train"].extend([tf.contrib.summary.scalar("train/heads_acc", heads_acc)])
deprels_acc = tf.reduce_sum(tf.cast(tf.equal(self.deprels, tf.argmax(deprels, axis=-1, output_type=tf.int32)),
tf.float32) * weights) / weights_sum
self.summaries["train"].extend([tf.contrib.summary.scalar("train/deprels_acc", deprels_acc)])
with summary_writer.as_default(), tf.contrib.summary.always_record_summaries():
self.current_loss, self.update_loss = tf.metrics.mean(loss, weights=weights_sum)
self.reset_metrics = tf.variables_initializer(tf.get_collection(tf.GraphKeys.METRIC_VARIABLES))
self.metrics = dict((metric, tf.placeholder(tf.float32, [])) for metric in self.METRICS)
for dataset in ["dev", "test"]:
self.summaries[dataset] = [tf.contrib.summary.scalar(dataset + "/loss", self.current_loss)]
for metric in self.METRICS:
self.summaries[dataset].append(tf.contrib.summary.scalar("{}/{}".format(dataset, metric),
self.metrics[metric]))
# Initialize variables
self.session.run(tf.global_variables_initializer())
with summary_writer.as_default():
tf.contrib.summary.initialize(session=self.session, graph=self.session.graph)
def train_epoch(self, train, learning_rate, args):
batches, at_least_one_epoch = 0, False
while batches < args.min_epoch_batches:
while not train.epoch_finished():
sentence_lens, word_ids, charseq_ids, charseqs, charseq_lens = train.next_batch(args.batch_size)
if args.word_dropout:
mask = np.random.binomial(n=1, p=args.word_dropout, size=word_ids[train.FORMS].shape)
word_ids[train.FORMS] = (1 - mask) * word_ids[train.FORMS] + mask * train.factors[train.FORMS].words_map["<unk>"]
if args.char_dropout:
mask = np.random.binomial(n=1, p=args.char_dropout, size=charseqs[train.FORMS].shape)
charseqs[train.FORMS] = (1 - mask) * charseqs[train.FORMS] + mask * train.factors[train.FORMS].alphabet_map["<unk>"]
feeds = {self.is_training: True, self.learning_rate: learning_rate, self.sentence_lens: sentence_lens,
self.charseqs: charseqs[train.FORMS], self.charseq_lens: charseq_lens[train.FORMS],
self.word_ids: word_ids[train.FORMS], self.charseq_ids: charseq_ids[train.FORMS]}
if args.embeddings:
if args.word_dropout:
mask = np.random.binomial(n=1, p=args.word_dropout, size=word_ids[train.EMBEDDINGS].shape)
word_ids[train.EMBEDDINGS] = (1 - mask) * word_ids[train.EMBEDDINGS]
embeddings = np.zeros([word_ids[train.EMBEDDINGS].shape[0], word_ids[train.EMBEDDINGS].shape[1], args.embeddings_size])
for i in range(embeddings.shape[0]):
for j in range(embeddings.shape[1]):
if word_ids[train.EMBEDDINGS][i, j]:
embeddings[i, j] = args.embeddings_data[word_ids[train.EMBEDDINGS][i, j] - 1]
feeds[self.embeddings] = embeddings
if args.elmo_size:
feeds[self.elmo] = word_ids[train.ELMO]
for tag in args.tags: feeds[self.tags[tag]] = word_ids[train.FACTORS_MAP[tag]]
if args.parse:
feeds[self.heads] = word_ids[train.HEAD]
feeds[self.deprels] = word_ids[train.DEPREL]
self.session.run([self.training, self.summaries["train"]], feeds)
batches += 1
if at_least_one_epoch: break
at_least_one_epoch = True
def predict(self, dataset, evaluating, args):
import io
conllu, sentences = io.StringIO(), 0
if evaluating: self.session.run(self.reset_metrics)
while not dataset.epoch_finished():
sentence_lens, word_ids, charseq_ids, charseqs, charseq_lens = dataset.next_batch(args.batch_size)
feeds = {self.is_training: False, self.sentence_lens: sentence_lens,
self.charseqs: charseqs[train.FORMS], self.charseq_lens: charseq_lens[train.FORMS],
self.word_ids: word_ids[train.FORMS], self.charseq_ids: charseq_ids[train.FORMS]}
if args.embeddings:
embeddings = np.zeros([word_ids[train.EMBEDDINGS].shape[0], word_ids[train.EMBEDDINGS].shape[1], args.embeddings_size])
for i in range(embeddings.shape[0]):
for j in range(embeddings.shape[1]):
if word_ids[train.EMBEDDINGS][i, j]:
embeddings[i, j] = args.embeddings_data[word_ids[train.EMBEDDINGS][i, j] - 1]
feeds[self.embeddings] = embeddings
if args.elmo_size:
feeds[self.elmo] = word_ids[train.ELMO]
if evaluating:
for tag in args.tags: feeds[self.tags[tag]] = word_ids[train.FACTORS_MAP[tag]]
if args.parse:
feeds[self.heads] = word_ids[train.HEAD]
feeds[self.deprels] = word_ids[train.DEPREL]
targets = [self.predictions]
if args.parse: targets.extend([self.heads_logs, self.deprel_hidden_layer])
if evaluating: targets.append(self.update_loss)
predictions, *other_values = self.session.run(targets, feeds)
if args.parse: prior_heads, deprel_hidden_layer, *_ = other_values
if args.parse:
heads = np.zeros(prior_heads.shape[:2], dtype=np.int32)
for i in range(len(sentence_lens)):
padded_heads = np.pad(prior_heads[i][:sentence_lens[i], :sentence_lens[i] + 1].astype(np.float),
((1, 0), (0, 0)), mode="constant")
padded_heads[:, 0] = np.nan
padded_heads[1 + np.argmax(prior_heads[i][:sentence_lens[i], 0]), 0] = 0
chosen_heads, _ = dependency_decoding.chu_liu_edmonds(padded_heads)
heads[i, :sentence_lens[i]] = chosen_heads[1:]
deprels = self.session.run(self.predictions_deprel,
{self.is_training: False, self.deprel_hidden_layer: deprel_hidden_layer, self.deprel_heads: heads})
for i in range(len(sentence_lens)):
overrides = [None] * dataset.FACTORS
for tag in args.tags: overrides[dataset.FACTORS_MAP[tag]] = predictions[tag][i]
if args.parse:
overrides[dataset.HEAD] = heads[i]
overrides[dataset.DEPREL] = deprels[i]
dataset.write_sentence(conllu, sentences, overrides)
sentences += 1
return conllu.getvalue()
def evaluate(self, dataset_name, dataset, dataset_conllu, args):
import io
conllu = self.predict(dataset, True, args)
metrics = conll18_ud_eval.evaluate(dataset_conllu, conll18_ud_eval.load_conllu(io.StringIO(conllu)))
self.session.run(self.summaries[dataset_name],
dict((self.metrics[metric], metrics[metric].f1) for metric in self.METRICS))
if args.parse:
return (metrics["LAS"].f1 + metrics["MLAS"].f1 + metrics["BLEX"].f1) / 3., metrics
else:
return metrics["AllTags"].f1, metrics
if __name__ == "__main__":
import argparse
import datetime
import os
import sys
import re
# Fix random seed
np.random.seed(42)
command_line = " ".join(sys.argv[1:])
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("basename", type=str, help="Base data name")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size.")
parser.add_argument("--beta_2", default=0.99, type=float, help="Adam beta 2")
parser.add_argument("--char_dropout", default=0, type=float, help="Character dropout")
parser.add_argument("--checkpoint", default="", type=str, help="Checkpoint.")
parser.add_argument("--cle_dim", default=256, type=int, help="Character-level embedding dimension.")
parser.add_argument("--dropout", default=0.5, type=float, help="Dropout")
parser.add_argument("--elmo", default=None, type=str, help="External contextualized embeddings to use.")
parser.add_argument("--embeddings", default=None, type=str, help="External lowercased embeddings to use.")
parser.add_argument("--epochs", default="40:1e-3,20:1e-4", type=str, help="Epochs and learning rates.")
parser.add_argument("--exp", default=None, type=str, help="Experiment name.")
parser.add_argument("--label_smoothing", default=0.03, type=float, help="Label smoothing.")
parser.add_argument("--min_epoch_batches", default=300, type=int, help="Minimum number of batches per epoch.")
parser.add_argument("--parse", default=1, type=int, help="Parse.")
parser.add_argument("--parser_layers", default=1, type=int, help="Parser layers.")
parser.add_argument("--parser_deprel_dim", default=128, type=int, help="Parser deprel dim.")
parser.add_argument("--predict", default=False, action="store_true", help="Only predict.")
parser.add_argument("--predict_input", default=None, type=str, help="Input to prediction.")
parser.add_argument("--predict_output", default=None, type=str, help="Output to prediction.")
parser.add_argument("--rnn_cell", default="LSTM", type=str, help="RNN cell type.")
parser.add_argument("--rnn_cell_dim", default=512, type=int, help="RNN cell dimension.")
parser.add_argument("--rnn_layers", default=2, type=int, help="RNN layers.")
parser.add_argument("--rnn_layers_parser", default=1, type=int, help="Parser RNN layers.")
parser.add_argument("--rnn_layers_tagger", default=1, type=int, help="Tagger RNN layers.")
parser.add_argument("--seed", default=42, type=int, help="Initial random seed.")
parser.add_argument("--tags", default="UPOS,XPOS,FEATS,LEMMAS", type=str, help="Tags.")
parser.add_argument("--tag_layers", default=1, type=int, help="Additional tag layers.")
parser.add_argument("--threads", default=4, type=int, help="Maximum number of threads to use.")
parser.add_argument("--we_dim", default=512, type=int, help="Word embedding dimension.")
parser.add_argument("--word_dropout", default=0.2, type=float, help="Word dropout")
args = parser.parse_args()
if args.exp is None:
args.exp = "{}-{}".format(os.path.basename(__file__), datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S"))
# Create logdir name
do_not_log = {"exp", "predict", "predict_input", "predict_output", "tags", "threads"}
args.logdir = "logs/{}-{}".format(
args.exp,
",".join(("{}={}".format(re.sub("(.)[^_]*_?", r"\1", key), re.sub("^.*/", "", value) if type(value) == str else value)
for key, value in sorted(vars(args).items()) if key not in do_not_log))
)
if not args.predict and not os.path.exists("logs"): os.mkdir("logs") # TF 1.6 will do this by itself
# Postprocess args
args.tags = args.tags.split(",")
args.epochs = [(int(epochs), float(lr)) for epochs, lr in (epochs_lr.split(":") for epochs_lr in args.epochs.split(","))]
# Load the data
if args.embeddings:
with np.load(args.embeddings) as embeddings_npz:
args.embeddings_words = embeddings_npz["words"]
args.embeddings_data = embeddings_npz["embeddings"]
args.embeddings_size = args.embeddings_data.shape[1]
root_factors = [ud_dataset.UDDataset.FORMS]
if args.predict:
train = ud_dataset.UDDataset("{}-ud-train.conllu".format(args.basename), root_factors,
embeddings=args.embeddings_words if args.embeddings else None)
test = ud_dataset.UDDataset(args.predict_input, root_factors, train=train, shuffle_batches=False, elmo=args.elmo)
else:
train = ud_dataset.UDDataset("{}-ud-train.conllu".format(args.basename), root_factors,
embeddings=args.embeddings_words if args.embeddings else None,
elmo=re.sub("(?=,|$)", "-train.npz", args.elmo) if args.elmo else None)
if os.path.exists("{}-ud-dev.conllu".format(args.basename)):
dev = ud_dataset.UDDataset("{}-ud-dev.conllu".format(args.basename), root_factors, train=train, shuffle_batches=False,
elmo=re.sub("(?=,|$)", "-dev.npz", args.elmo) if args.elmo else None)
else:
dev = None
test = ud_dataset.UDDataset("{}-ud-test.conllu".format(args.basename), root_factors, train=train, shuffle_batches=False,
elmo=re.sub("(?=,|$)", "-test.npz", args.elmo) if args.elmo else None)
args.elmo_size = test.elmo_size
# Construct the network
network = Network(threads=args.threads, seed=args.seed)
network.construct(args, len(train.factors[train.FORMS].words), len(train.factors[train.FORMS].alphabet),
dict((tag, len(train.factors[train.FACTORS_MAP[tag]].words)) for tag in args.tags),
len(train.factors[train.DEPREL].words), predict_only=args.predict)
if args.checkpoint:
saver = network.saver_train if args.predict is None else network.saver_inference
saver.restore(network.session, args.checkpoint)
if args.predict:
conllu = network.predict(test, False, args)
print(conllu, end="", file=open(args.predict_output, "w", encoding="utf-8") if args.predict_output else sys.stdout)
exit(0)
with open("{}/cmd".format(args.logdir), "w") as cmd_file:
cmd_file.write(command_line)
log_file = open("{}/log".format(args.logdir), "w")
for tag in args.tags + ["DEPREL"]:
print("{}: {}".format(tag, len(train.factors[train.FACTORS_MAP[tag]].words)), file=log_file, flush=True)
print("Parsing with args:", "\n".join(("{}: {}".format(key, value) for key, value in sorted(vars(args).items())
if key not in ["embeddings_data", "embeddings_words"])), flush=True)
if dev:
dev_conllu = conll18_ud_eval.load_conllu_file("{}-ud-dev.conllu".format(args.basename))
test_conllu = conll18_ud_eval.load_conllu_file("{}-ud-test.conllu".format(args.basename))
for i, (epochs, learning_rate) in enumerate(args.epochs):
for epoch in range(epochs):
network.train_epoch(train, learning_rate, args)
if dev:
dev_accuracy, metrics = network.evaluate("dev", dev, dev_conllu, args)
metrics_log = ", ".join(("{}: {:.2f}".format(metric, 100 * metrics[metric].f1) for metric in Network.METRICS))
print("Dev, epoch {}, lr {}, {}".format(epoch + 1, learning_rate, metrics_log), file=log_file, flush=True)
test_accuracy, metrics = network.evaluate("test", test, test_conllu, args)
metrics_log = ", ".join(("{}: {:.2f}".format(metric, 100 * metrics[metric].f1) for metric in Network.METRICS))
print("Test, epoch {}, lr {}, {}".format(epoch + 1, learning_rate, metrics_log), file=log_file, flush=True)
#network.saver_train.save(network.session, "{}/checkpoint".format(args.logdir), global_step=network.global_step, write_meta_graph=False)
network.saver_inference.save(network.session, "{}/checkpoint-inference-last".format(args.logdir), write_meta_graph=False)