forked from wenet-e2e/wenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathremove_longshortdata.py
executable file
·73 lines (69 loc) · 2.78 KB
/
remove_longshortdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# encoding: utf-8
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='remove too long or too short data in format.data')
parser.add_argument('--data_file', type=str, help='input format data')
parser.add_argument('--output_data_file',
type=str,
help='output format data')
parser.add_argument(
'--min_input_len',
type=float,
default=0,
help='minimum input seq length, in seconds for raw wav, \
in frame numbers for feature data')
parser.add_argument(
'--max_input_len',
type=float,
default=20,
help='maximum output seq length, in seconds for raw wav, \
in frame numbers for feature data')
parser.add_argument('--min_output_len',
type=float,
default=0,
help='minimum input seq length, in modeling units')
parser.add_argument('--max_output_len',
type=float,
default=500,
help='maximum output seq length, in modeling units')
parser.add_argument(
'--min_output_input_ratio',
type=float,
default=0.05,
help='minimum output seq length/output seq length ratio')
parser.add_argument(
'--max_output_input_ratio',
type=float,
default=10,
help='maximum output seq length/output seq length ratio')
args = parser.parse_args()
data_file = args.data_file
output_data_file = args.output_data_file
min_input_len = args.min_input_len
max_input_len = args.max_input_len
min_output_len = args.min_output_len
max_output_len = args.max_output_len
min_output_input_ratio = args.min_output_input_ratio
max_output_input_ratio = args.max_output_input_ratio
with open(data_file, 'r') as f, open(output_data_file, 'w') as fout:
for l in f:
l = l.strip()
if l:
items = l.strip().split('\t')
token_shape = items[6]
feature_shape = items[2]
feat_len = float(feature_shape.split(':')[1].split(',')[0])
token_len = float(token_shape.split(':')[1].split(',')[0])
condition = [
feat_len > min_input_len,
feat_len < max_input_len,
token_len > min_output_len,
token_len < max_output_len,
token_len / feat_len > min_output_input_ratio,
token_len / feat_len < max_output_input_ratio,
]
if all(condition):
fout.write('{}\n'.format(l))
continue