Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
arlosefj committed Feb 13, 2020
1 parent e83dfb0 commit 21d0168
Show file tree
Hide file tree
Showing 54 changed files with 1,902 additions and 10 deletions.
72 changes: 72 additions & 0 deletions 2Dto3D.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,81 @@ https://github.com/tensorflow/models/tree/master/research/struct2depth
DeepTAM: Deep Tracking and Mapping
https://github.com/lmb-freiburg/deeptam

FADNet: A Fast and Accurate Network for Disparity Estimation
https://github.com/HKBU-HPML/FADNet

code for Mesh R-CNN, an academic publication, presented at ICCV 2019
https://github.com/facebookresearch/meshrcnn

A PyTorch Library for Accelerating 3D Deep Learning Research
https://github.com/NVIDIAGameWorks/kaolin

A pytorch implementation of "D4LCN: Learning Depth-Guided Convolutions for Monocular 3D Object Detection"
https://github.com/dingmyu/D4LCN

it referenced paper of GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB.
https://github.com/Ninebell/GaneratedHandsForReal_TIME

Hierarchical Deep Stereo Matching on High Resolution Images, CVPR 2019.
https://github.com/gengshan-y/high-res-stereo

Learning View Priors for Single-view 3D Reconstruction
https://github.com/hiroharu-kato/view_prior_learning

The official implementation of the ICCV 2019 paper "GraphX-convolution for point cloud deformation in 2D-to-3D conversion".
https://github.com/justanhduc/graphx-conv

Official pytorch implementation of "Indoor Depth Completion with Boundary Consistency and Self-Attention. Huang et al. RLQ@ICCV 2019." https://arxiv.org/abs/1908.08344
https://github.com/patrickwu2/Depth-Completion

MVSNet: Depth Inference for Unstructured Multi-view Stereo.
https://github.com/xy-guo/MVSNet_pytorch

Neural network code for Deep Blending for Free-Viewpoint Image-Based Rendering (SIGGRAPH Asia 2018)
https://github.com/Phog/DeepBlending

Extreme View Synthesis
https://github.com/NVlabs/extreme-view-synth

Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer (NeurIPS 2019)
https://github.com/nv-tlabs/DIB-R

CNN-SVO: Improving the Mapping in Semi-Direct Visual Odometry Using Single-Image Depth Prediction
https://github.com/yan99033/CNN-SVO

TriDepth: Triangular Patch-based Deep Depth Prediction [Kaneko+, ICCVW2019(oral)]
https://github.com/syinari0123/tridepth

From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation
https://github.com/cogaplex-bts/bts

Geometry meets semantics for semi-supervised monocular depth estimation - ACCV 2018
https://github.com/CVLAB-Unibo/Semantic-Mono-Depth

PyTorch implementation for LayoutNet v2 in the paper: "3D Manhattan Room Layout Reconstruction from a Single 360 Image"
https://github.com/zouchuhang/LayoutNetv2

Real-Time 3D Semantic Reconstruction from 2D data
https://github.com/MIT-SPARK/Kimera-Semantics

This repo includes the source code of the fully convolutional depth denoising model presented in https://arxiv.org/pdf/1909.01193.pdf
https://github.com/VCL3D/DeepDepthDenoising

This is the project page of the paper "Flow-Motion and Depth Network for Monocular Stereo and Beyond''
https://github.com/HKUST-Aerial-Robotics/Flow-Motion-Depth

【神经网络3D重建资源列表】
https://github.com/natowi/3D-Reconstruction-with-Neural-Network

Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video (NeurIPS 2019)
https://github.com/JiawangBian/SC-SfMLearner-Release

深度学习深度估计研究指南
https://pan.baidu.com/s/1RhORsmInOk1ZEmOKuUeybw

《Do As I Do: Transferring Human Motion and Appearance between Monocular Videos with Spatial and Temporal Constraints》
https://www.arxiv-vanity.com/papers/2001.02606/

(PyTorch)合成-现实(Synthetic-to-Realistic)转换深度估计
https://github.com/lyndonzheng/Synthetic2Realistic

Expand Down
3 changes: 3 additions & 0 deletions AR.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,9 @@ https://www.aminer.cn/research_report/5cf7993c00eea1f1d521d784
基于ARKit3的人体实时分割与打码 via:Kitasenju Design
https://weibo.com/tv/v/HApWK8FAc?fid=1034:4386795211940756

C++ implementation of Fast Depth Densification for Occlusion-aware Augmented Reality (SIGGRAPH-Asia 2018)
https://github.com/muskie82/AR-Depth-cpp

用 普通手机 + Google Street View App + Google Tour Creator 可以轻松创建很酷的VR导览 Demo

很有感觉的未来派#AR#
Expand Down
31 changes: 31 additions & 0 deletions Algorithm.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,40 @@ https://mp.weixin.qq.com/s/fIRW0z-AMwFwsvC8hvYnYg
【旅行商问题解决算法可视化】’Traveling Salesman Problem - Visualization of algorithms for solving the traveling salesman problem'
https://github.com/jhackshaw/tspvis

【Python字符串相似性算法库】
https://github.com/luozhouyang/python-string-similarity

'面试算法/数据结构笔记 - Algorithm for Interview(面试算法笔记-中文)
https://github.com/imhuay/Algorithm_for_Interview-Chinese

'信息学竞赛讲课课件'
https://github.com/huzecong/oi-slides
本科毕业于清华大学,现于CMU攻读硕士的胡泽聪同学,在GitHub上放出了他从2013年至2018年的所有信息学竞赛讲课课件。主要内容包括:TopCoder题目选讲、CodeChef题目选讲、网络流模型、NOIP图论、NOIP数学方法、数据结构及应用、动态规划、线性代数、概率与期望等。

'LeetCode-book - leetcode 1~400知识点&题型总结&leetcode对应题表'
https://github.com/huxiaoman7/leetcodebook

动态规划之博弈问题
https://mp.weixin.qq.com/s/gY9aHcIaBz2iPQraptJmgQ

【基于Anki的算法与数据结构面试准备资料集】
https://github.com/teivah/algodeck

《详解一道高频面试题:接雨水》
https://mp.weixin.qq.com/s/sO3rokhr_xsjZ0wXf6j5GQ

算法和编程面试题精选TOP50!(附代码+解题思路+答案)
https://mp.weixin.qq.com/s/ABSgO36dGLa1_d5daN2c8A

【算法分类知识框架】
https://static.coggle.it/diagram/WHeBqDIrJRk-kDDY/t/categories-of-algorithms-non-exhaustive

《程序员修炼之路》作者将自己作为一个过来人,总结了自己程序员修炼之路的经验,以及给后辈的一些建议,分享给初入门的程序员同学。
https://github.com/Snailclimb/programmer-advancement

107+ 条最常出现的编码面试问题及详细解决方案
https://github.com/hoanhan101/algo

【Leetcode 的 Python 参考方案/解析】’ Leetcode Python Solution and Explanation. Also a Guide to Prepare for Software Engineer Interview.'
https://github.com/wuduhren/leetcode-python

Expand Down
24 changes: 24 additions & 0 deletions AnomalyDetection.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,30 @@ https://www.amazon.com/Beginning-Anomaly-Detection-Python-Based-Learning/dp/1484
深度学习缺陷检测
https://github.com/sundyCoder/DEye

Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning
https://github.com/maxkferg/metal-defect-detection

A Benchmark for Anomaly Segmentation
https://github.com/hendrycks/anomaly-seg

Code for the CVPR'19 paper "Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos"
https://github.com/RomeroBarata/skeleton_based_anomaly_detection

### Repository for the One class neural networks paper
https://github.com/raghavchalapathy/oc-nn

An Acceleration System for Large-Scale Unsupervised Anomaly Detection
https://github.com/yzhao062/SUOD

### (最先进的缺陷检测网络) A Tensorflow implementation of "Segmentation-Based Deep-Learning Approach for Surface-Defect Detection"
https://github.com/Wslsdx/Deep-Learning-Approach-for-Surface-Defect-Detection

Cork/Face Presentation Attack Detection
https://github.com/ee09115/spoofing_detection

### 【深度学习混凝土结构裂纹检测】
https://github.com/priya-dwivedi/Deep-Learning/blob/master/crack_detection/Crack%20Detection%20Model.ipynb

A PyTorch implementation of the Deep SVDD anomaly detection method
https://github.com/lukasruff/Deep-SVDD-PyTorch

Expand Down
57 changes: 57 additions & 0 deletions Audio.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,60 @@ https://github.com/deezer/spleeter
【开源语音分离/增强库】
https://github.com/speechLabBcCuny/onssen

Feature extractor for DL speech processing.
https://github.com/bepierre/SpeechVGG

Transforming Spectrum and Prosody for Emotional Voice Conversion with Non-Parallel Training Data
https://github.com/KunZhou9646/Nonparallel-emotional-VC

This is a PyTorch re-implementation of Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition.
https://github.com/foamliu/Speech-Transformer

【Athena:开源端到端语音识别引擎】
https://github.com/athena-team/athena

PREDICTING EXPRESSIVE SPEAKING STYLE FROM TEXT IN END-TO-END SPEECH SYNTHESIS
https://github.com/Yangyangii/TPGST-Tacotron

PyTorch implementation of LF-MMI for End-to-end ASR
https://github.com/YiwenShaoStephen/pychain

Audio samples from ICML2019 "Almost Unsupervised Text to Speech and Automatic Speech Recognition"
https://github.com/RayeRen/unsuper_tts_asr

Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention.
https://github.com/CSTR-Edinburgh/ophelia

Efficient neural speech synthesis
https://github.com/MlWoo/LPCNet

Code for Vision-Infused Deep Audio Inpainting (ICCV 2019)
https://github.com/Hangz-nju-cuhk/Vision-Infused-Audio-Inpainter-VIAI

deep learning based speech enhancement using keras or pytorch
https://github.com/yongxuUSTC/sednn

Multi-voice singing voice synthesis
https://github.com/MTG/WGANSing

【用涂鸦“唱歌”:将图像合成为声音】
https://github.com/jeonghopark/SketchSynth-Simple

【面向语音识别的中文/英文发音辞典】’
https://github.com/speech-io/BigCiDian

### 【Kaldi/TensorFlow实现的神经网络说话人验证系统】
https://github.com/someonefighting/tf-kaldi-speaker-master

### Facebook开源低延迟在线语音识别框架wav2letter
https://github.com/facebookresearch/wav2letter/wiki/Inference-Framework

【GridSound:在线数字音频编辑器】
https://github.com/GridSound/daw

【Asteroid:基于PyTorch的音源分离工具集】
https://github.com/mpariente/ASSteroid

【MelGAN 超快音频合成】
https://github.com/descriptinc/melgan-neurips

Expand All @@ -112,6 +166,9 @@ https://github.com/haryoa/note_music_generator
音频分析/音乐检索相关数据集大列表
https://www.audiocontentanalysis.org/data-sets/

### 【用TensorRT在GPU上部署实时文本-语音合成应用】
https://devblogs.nvidia.com/how-to-deploy-real-time-text-to-speech-applications-on-gpus-using-tensorrt/

用WaveNet让语音受损用户重拾原声(少样本自适应自然语音合成)
https://deepmind.com/blog/article/Using-WaveNet-technology-to-reunite-speech-impaired-users-with-their-original-voices

Expand Down
8 changes: 7 additions & 1 deletion C&C++.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,9 @@ https://github.com/nlohmann/json
用 C 从零创建一个简单的数据库
https://github.com/cstack/db_tutorial

'C++ Primer 中文版第5版学习笔记和课后练习答案'
https://github.com/applenob/Cpp_Primer_Practice

一个 C++ 头文件库,让你以简单的几行代码就可以实现高效的并发
https://github.com/cpp-taskflow/cpp-taskflow

Expand All @@ -26,4 +29,7 @@ UNIX环境高级编程
https://github.com/huaxz1986/APUE_notes

分享 GitHub 上几个适合开发者跟进学习的课程资源
https://mp.weixin.qq.com/s/D9OxgkXpEyvzg4wqMeYoPA
https://mp.weixin.qq.com/s/D9OxgkXpEyvzg4wqMeYoPA

【为你的开源代码选择合适的开源许可证】
https://github.com/github/choosealicense.com
5 changes: 4 additions & 1 deletion Collection.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,7 @@ https://weibo.com/tv/v/HBED7uD44?fid=1034:4389743065034223
https://github.com/iptv-org/iptv

'笔记/搜集/摘录/实践'
https://github.com/jaywcjlove/handbook
https://github.com/jaywcjlove/handbook

'404 Not Found的知识库:计算机理论基础、计算机技术基础、底层研究、安全技术、安全研究、人工智能、企业安全建设、安全发展、职业规划、综合素质、国内外优秀技术人'
https://github.com/404notf0und/Always-Learning#%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD
6 changes: 6 additions & 0 deletions Competition.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,12 @@ https://towardsdatascience.com/how-a-team-of-deep-learning-newbies-came-3rd-plac
'阿水的开源比赛方案集锦’
https://github.com/finlay-liu/kaggle_public

“Kaggle开放日:Kaggle比赛教程”
https://www.bilibili.com/video/av82395461/

【Kaggle优胜方案汇总】“KaggleDB“
https://kaggledb.com/solutions

【开放 机器学习/数据科学/AI 竞赛大列表】
https://github.com/mlcontests/mlcontests.github.io

Expand Down
3 changes: 3 additions & 0 deletions ContinualLearning.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@ https://github.com/GMvandeVen/continual-learning
A platform for online learning that curtails data latency and saves you cost.
https://github.com/All-less/continuum

Official code for ICLR 2020 paper "A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning."
https://github.com/soochan-lee/CN-DPM

Continual-Learning-Benchmark
https://github.com/GT-RIPL/Continual-Learning-Benchmark

Expand Down
91 changes: 91 additions & 0 deletions DLArch.md
Original file line number Diff line number Diff line change
Expand Up @@ -100,9 +100,100 @@ https://github.com/alexandonian/pretorched-x
NNI:微软发布的开源神经架构搜索/超参调优自动机器学习(AutoML)工具包,通过多种调优算法搜索最佳神经网络结构和(或)超参,支持单机、本地多机、云等不同的运行环境】’NNI (Neural Network Intelligence) - An open source AutoML toolkit for neural architecture search and hyper-parameter tuning' by Microsoft
https://github.com/Microsoft/nni/releases

Implementation of the paper: "Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition" (ICCV 2019)
https://github.com/HCPLab-SYSU/SSGRL

Efficient Transformers for research, PyTorch and Tensorflow using Locality Sensitive Hashing
https://github.com/cerebroai/reformers

Code release for "Adversarial Robustness vs Model Compression, or Both?"
https://github.com/yeshaokai/Robustness-Aware-Pruning-ADMM

Visual Attention Consistency Under Image Transforms for Multi-Label Image Classification
https://github.com/hguosc/visual_attention_consistency

Geom-GCN: Geometric Graph Convolutional Networks
https://github.com/graphdml-uiuc-jlu/geom-gcn

Code for ICLR 2020 paper 'AtomNAS: Fine-Grained End-to-End Neural Architecture Search'
https://github.com/meijieru/AtomNAS

Source code accompanying our CVPR 2019 paper: "NetTailor: Tuning the architecture, not just the weights."
https://github.com/pedro-morgado/nettailor

Official pyTorch implementation of "Dynamic-Net: Tuning the Objective Without Re-training for Synthesis Tasks" experiments
https://github.com/AlonShoshan10/dynamic_net

R2D2: Reliable and Repeatable Detector and Descriptor
https://github.com/naver/r2d2

Multi-level Wavelet-CNN for Image Restoration
https://github.com/lpj0/MWCNN

Improved Wave-U-Net implemented in Pytorch
https://github.com/f90/Wave-U-Net-Pytorch

This is a tensorflow implementation of high-resolution representations for ImageNet classification.
https://github.com/yuanyuanli85/tf-hrnet

Codebase for Image Classification Research, written in PyTorch.
https://github.com/facebookresearch/pycls

Official code for using / reproducing CDEP from the paper "Interpretations are useful: penalizing explanations to align neural networks with prior knowledge".
https://github.com/laura-rieger/deep-explanation-penalization

partial residual networks
https://github.com/WongKinYiu/PartialResidualNetworks

SPOS(Single Path One-Shot Neural Architecture Search with Uniform Sampling) rebuilt in Pytorch with single GPU.
https://github.com/ShunLu91/Single-Path-One-Shot-NAS

This repository contains FCOS(ICCV'19) with VoVNet (CVPRW'19) efficient backbone networks. This code based on pytorch imeplementation of FCOS
https://github.com/vov-net/VoVNet-FCOS

NeuralNetwork-Viterbi: A Framework for Weakly Supervised Video Learning
https://github.com/alexanderrichard/NeuralNetwork-Viterbi

Graph Neural Networks for Multi-Label Classification
https://github.com/QData/LaMP

CORnet: Modeling the Neural Mechanisms of Core Object Recognition
https://github.com/dicarlolab/CORnet

The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"
https://github.com/Res2Net/Res2Net-PretrainedModels

PyTorch code for our BMVC 2019 paper "Image Classification with Hierarchical Multigraph Networks"
https://github.com/bknyaz/bmvc_2019

Efficient Graph Generation with Graph Recurrent Attention Networks, Deep Generative Model of Graphs, Graph Neural Networks, NeurIPS 2019
https://github.com/lrjconan/GRAN

Bridging the gap Between Stability and Scalability in Neural Architecture Search
https://github.com/xiaomi-automl/SCARLET-NAS

A Pytorch implementation for the paper Local Relational Networks for Image Recognition
https://github.com/gan3sh500/local-relational-nets

Knowledge-Aware Graph Networks for Commonsense Reasoning (EMNLP-IJCNLP 19)
https://github.com/INK-USC/KagNet

PyTorch implementation of "Searching for A Robust Neural Architecture in Four GPU Hours", CVPR 2019
https://github.com/D-X-Y/GDAS

'《深入浅出图神经网络:GNN原理解析》配套代码'
https://github.com/FighterLYL/GraphNeuralNetwork

'用Keras实现的图卷积神经网络 Semi-supervised classification by Graph Convolutional Network with Keras'
https://github.com/zhouchunpong/GCN_Keras

【超参自动优化框架Optuna发布v1.0版】“Optuna: An open source hyperparameter optimization framework to automate hyperparameter search”
https://github.com/optuna/optuna
新特性:用最先进优化算法实现高效超参优化;支持各种机器学习库,包括PyTorch、TensorFlow、Keras、FastAI、Scikit-Learn、LightGBM和XGBoost;支持跨多台计算机并行执行,减少优化时间;搜索空间可用 Python 控制语句描述;集成多种可视化,方便对优化结果进行各种分析

《FrequentNet : A New Deep Learning Baseline for Image Classification》
https://arxiv.org/abs/2001.01034

【女孩图片多标签分类】
https://github.com/KichangKim/DeepDanbooru

Expand Down
Loading

0 comments on commit 21d0168

Please sign in to comment.