forked from babysor/MockingBird
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add web gui of training and reconstruct taco model methods
- Loading branch information
Showing
5 changed files
with
330 additions
and
185 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
from pydantic import BaseModel, Field | ||
import os | ||
from pathlib import Path | ||
from enum import Enum | ||
from typing import Any, Tuple | ||
import numpy as np | ||
from utils.load_yaml import HpsYaml | ||
from utils.util import AttrDict | ||
import torch | ||
|
||
# Constants | ||
EXT_MODELS_DIRT = f"ppg_extractor{os.sep}saved_models" | ||
CONV_MODELS_DIRT = f"ppg2mel{os.sep}saved_models" | ||
ENC_MODELS_DIRT = f"encoder{os.sep}saved_models" | ||
|
||
|
||
if os.path.isdir(EXT_MODELS_DIRT): | ||
extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt"))) | ||
print("Loaded extractor models: " + str(len(extractors))) | ||
else: | ||
raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.") | ||
|
||
if os.path.isdir(CONV_MODELS_DIRT): | ||
convertors = Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth"))) | ||
print("Loaded convertor models: " + str(len(convertors))) | ||
else: | ||
raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.") | ||
|
||
if os.path.isdir(ENC_MODELS_DIRT): | ||
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt"))) | ||
print("Loaded encoders models: " + str(len(encoders))) | ||
else: | ||
raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.") | ||
|
||
class Model(str, Enum): | ||
VC_PPG2MEL = "ppg2mel" | ||
|
||
class Dataset(str, Enum): | ||
AIDATATANG_200ZH = "aidatatang_200zh" | ||
AIDATATANG_200ZH_S = "aidatatang_200zh_s" | ||
|
||
class Input(BaseModel): | ||
# def render_input_ui(st, input) -> Dict: | ||
# input["selected_dataset"] = st.selectbox( | ||
# '选择数据集', | ||
# ("aidatatang_200zh", "aidatatang_200zh_s") | ||
# ) | ||
# return input | ||
model: Model = Field( | ||
Model.VC_PPG2MEL, title="模型类型", | ||
) | ||
# datasets_root: str = Field( | ||
# ..., alias="预处理数据根目录", description="输入目录(相对/绝对),不适用于ppg2mel模型", | ||
# format=True, | ||
# example="..\\trainning_data\\" | ||
# ) | ||
output_root: str = Field( | ||
..., alias="输出目录(可选)", description="建议不填,保持默认", | ||
format=True, | ||
example="" | ||
) | ||
continue_mode: bool = Field( | ||
True, alias="继续训练模式", description="选择“是”,则从下面选择的模型中继续训练", | ||
) | ||
gpu: bool = Field( | ||
True, alias="GPU训练", description="选择“是”,则使用GPU训练", | ||
) | ||
verbose: bool = Field( | ||
True, alias="打印详情", description="选择“是”,输出更多详情", | ||
) | ||
# TODO: Move to hiden fields by default | ||
convertor: convertors = Field( | ||
..., alias="转换模型", | ||
description="选择语音转换模型文件." | ||
) | ||
extractor: extractors = Field( | ||
..., alias="特征提取模型", | ||
description="选择PPG特征提取模型文件." | ||
) | ||
encoder: encoders = Field( | ||
..., alias="语音编码模型", | ||
description="选择语音编码模型文件." | ||
) | ||
njobs: int = Field( | ||
8, alias="进程数", description="适用于ppg2mel", | ||
) | ||
seed: int = Field( | ||
default=0, alias="初始随机数", description="适用于ppg2mel", | ||
) | ||
model_name: str = Field( | ||
..., alias="新模型名", description="仅在重新训练时生效,选中继续训练时无效", | ||
example="test" | ||
) | ||
model_config: str = Field( | ||
..., alias="新模型配置", description="仅在重新训练时生效,选中继续训练时无效", | ||
example=".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2" | ||
) | ||
|
||
class AudioEntity(BaseModel): | ||
content: bytes | ||
mel: Any | ||
|
||
class Output(BaseModel): | ||
__root__: Tuple[str, int] | ||
|
||
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore | ||
"""Custom output UI. | ||
If this method is implmeneted, it will be used instead of the default Output UI renderer. | ||
""" | ||
sr, count = self.__root__ | ||
streamlit_app.subheader(f"Dataset {sr} done processed total of {count}") | ||
|
||
def train_vc(input: Input) -> Output: | ||
"""Train VC(训练 VC)""" | ||
|
||
print(">>> OneShot VC training ...") | ||
params = AttrDict() | ||
params.update({ | ||
"gpu": input.gpu, | ||
"cpu": not input.gpu, | ||
"njobs": input.njobs, | ||
"seed": input.seed, | ||
"verbose": input.verbose, | ||
"load": input.convertor.value, | ||
"warm_start": False, | ||
}) | ||
if input.continue_mode: | ||
# trace old model and config | ||
p = Path(input.convertor.value) | ||
params.name = p.parent.name | ||
# search a config file | ||
model_config_fpaths = list(p.parent.rglob("*.yaml")) | ||
if len(model_config_fpaths) == 0: | ||
raise "No model yaml config found for convertor" | ||
config = HpsYaml(model_config_fpaths[0]) | ||
params.ckpdir = p.parent.parent | ||
params.config = model_config_fpaths[0] | ||
params.logdir = os.path.join(p.parent, "log") | ||
else: | ||
# Make the config dict dot visitable | ||
config = HpsYaml(input.config) | ||
np.random.seed(input.seed) | ||
torch.manual_seed(input.seed) | ||
if torch.cuda.is_available(): | ||
torch.cuda.manual_seed_all(input.seed) | ||
mode = "train" | ||
from ppg2mel.train.train_linglf02mel_seq2seq_oneshotvc import Solver | ||
solver = Solver(config, params, mode) | ||
solver.load_data() | ||
solver.set_model() | ||
solver.exec() | ||
print(">>> Oneshot VC train finished!") | ||
|
||
# TODO: pass useful return code | ||
return Output(__root__=(input.dataset, 0)) |
Oops, something went wrong.