This repository contains training, generation and utility scripts for Stable Diffusion.
This feature is experimental. The options and the training script may change in the future. Please let us know if you have any idea to improve the training.
Please update PyTorch to 2.4.0. We have tested with torch==2.4.0
and torchvision==0.19.0
with CUDA 12.4. We also updated accelerate
to 0.33.0 just to be safe. requirements.txt
is also updated, so please update the requirements.
The command to install PyTorch is as follows:
pip3 install torch==2.4.0 torchvision==0.19.0 --index-url https://download.pytorch.org/whl/cu124
Dec 15, 2024:
- RAdamScheduleFree optimizer is supported. PR #1830 Thanks to nhamanasu!
- Update to
schedulefree==1.4
is required. Please update individually or withpip install --use-pep517 --upgrade -r requirements.txt
. - Available with
--optimizer_type=RAdamScheduleFree
. No need to specify warm up steps as well as learning rate scheduler.
- Update to
Dec 7, 2024:
- The option to specify the model name during ControlNet training was different in each script. It has been unified. Please specify
--controlnet_model_name_or_path
. PR #1821 Thanks to sdbds!
- Fixed an issue where the saved model would be corrupted (pos_embed would not be saved) when
--enable_scaled_pos_embed
was specified insd3_train.py
.
Dec 3, 2024:
---blocks_to_swap
now works in FLUX.1 ControlNet training. Sample commands for 24GB VRAM and 16GB VRAM are added here.
Dec 2, 2024:
- FLUX.1 ControlNet training is supported. PR #1813. Thanks to minux302! See PR and here for details.
- Not fully tested. Feedback is welcome.
- 80GB VRAM is required for 1024x1024 resolution, and 48GB VRAM is required for 512x512 resolution.
- Currently, it only works in Linux environment (or Windows WSL2) because DeepSpeed is required.
- Multi-GPU training is not tested.
Dec 1, 2024:
-
Pseudo Huber loss is now available for FLUX.1 and SD3.5 training. See PR #1808 for details. Thanks to recris!
- Specify
--loss_type huber
or--loss_type smooth_l1
to use it.--huber_c
and--huber_scale
are also available.
- Specify
-
Prodigy + ScheduleFree is supported. See PR #1811 for details. Thanks to rockerBOO!
Nov 14, 2024:
- Improved the implementation of block swap and made it available for both FLUX.1 and SD3 LoRA training. See FLUX.1 LoRA training etc. for how to use the new options. Training is possible with about 8-10GB of VRAM.
- During fine-tuning, the memory usage when specifying the same number of blocks has increased slightly, but the training speed when specifying block swap has been significantly improved.
- There may be bugs due to the significant changes. Feedback is welcome.
- FLUX.1 LoRA training
- FLUX.1 ControlNet training
- FLUX.1 OFT training
- Inference for FLUX.1 with LoRA model
- FLUX.1 fine-tuning
- Extract LoRA from FLUX.1 Models
- Convert FLUX LoRA
- Merge LoRA to FLUX.1 checkpoint
- FLUX.1 Multi-resolution training
- Convert Diffusers to FLUX.1
We have added a new training script for LoRA training. The script is flux_train_network.py
. See --help
for options.
FLUX.1 model, CLIP-L, and T5XXL models are recommended to be in bf16/fp16 format. If you specify --fp8_base
, you can use fp8 models for FLUX.1. The fp8 model is only compatible with float8_e4m3fn
format.
Sample command is below. It will work with 24GB VRAM GPUs.
accelerate launch --mixed_precision bf16 --num_cpu_threads_per_process 1 flux_train_network.py
--pretrained_model_name_or_path flux1-dev.safetensors --clip_l sd3/clip_l.safetensors --t5xxl sd3/t5xxl_fp16.safetensors
--ae ae.safetensors --cache_latents_to_disk --save_model_as safetensors --sdpa --persistent_data_loader_workers
--max_data_loader_n_workers 2 --seed 42 --gradient_checkpointing --mixed_precision bf16 --save_precision bf16
--network_module networks.lora_flux --network_dim 4 --network_train_unet_only
--optimizer_type adamw8bit --learning_rate 1e-4
--cache_text_encoder_outputs --cache_text_encoder_outputs_to_disk --fp8_base
--highvram --max_train_epochs 4 --save_every_n_epochs 1 --dataset_config dataset_1024_bs2.toml
--output_dir path/to/output/dir --output_name flux-lora-name
--timestep_sampling shift --discrete_flow_shift 3.1582 --model_prediction_type raw --guidance_scale 1.0
(The command is multi-line for readability. Please combine it into one line.)
We also not sure how many epochs are needed for convergence, and how the learning rate should be adjusted.
The trained LoRA model can be used with ComfyUI.
When training LoRA for Text Encoder (without --network_train_unet_only
), more VRAM is required. Please refer to the settings below to reduce VRAM usage.
Options for GPUs with less VRAM:
By specifying --blocks_to_swap
, you can save VRAM by swapping some blocks between CPU and GPU. See FLUX.1 fine-tuning for details.
Specify a number like --blocks_to_swap 10
. A larger number will swap more blocks, saving more VRAM, but training will be slower. In FLUX.1, you can swap up to 35 blocks.
--cpu_offload_checkpointing
offloads gradient checkpointing to CPU. This reduces up to 1GB of VRAM usage but slows down the training by about 15%. Cannot be used with --blocks_to_swap
.
Adafactor optimizer may reduce the VRAM usage than 8bit AdamW. Please use settings like below:
--optimizer_type adafactor --optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" --lr_scheduler constant_with_warmup --max_grad_norm 0.0
The training can be done with 16GB VRAM GPUs with the batch size of 1. Please change your dataset configuration.
The training can be done with 12GB VRAM GPUs with --blocks_to_swap 16
with 8bit AdamW. Please use settings like below:
--blocks_to_swap 16
For GPUs with less than 10GB of VRAM, it is recommended to use an fp8 checkpoint for T5XXL. You can download t5xxl_fp8_e4m3fn.safetensors
from comfyanonymous/flux_text_encoders (please use without scaled
).
10GB VRAM GPUs will work with 22 blocks swapped, and 8GB VRAM GPUs will work with 28 blocks swapped.
--split_mode
is deprecated. This option is still available, but they will be removed in the future. Please use --blocks_to_swap
instead. If this option is specified and --blocks_to_swap
is not specified, --blocks_to_swap 18
is automatically enabled.
There are many unknown points in FLUX.1 training, so some settings can be specified by arguments. Here are the arguments. The arguments and sample settings are still experimental and may change in the future. Feedback on the settings is welcome.
-
--pretrained_model_name_or_path
is the path to the pretrained model (FLUX.1). bf16 (original BFL model) is recommended (flux1-dev.safetensors
orflux1-dev.sft
). If you specify--fp8_base
, you can use fp8 models for FLUX.1. The fp8 model is only compatible withfloat8_e4m3fn
format. -
--clip_l
is the path to the CLIP-L model. -
--t5xxl
is the path to the T5XXL model. If you specify--fp8_base
, you can use fp8 (float8_e4m3fn) models for T5XXL. However, it is recommended to use fp16 models for caching. -
--ae
is the path to the autoencoder model (ae.safetensors
orae.sft
). -
--timestep_sampling
is the method to sample timesteps (0-1):sigma
: sigma-based, same as SD3uniform
: uniform randomsigmoid
: sigmoid of random normal, same as x-flux, AI-toolkit etc.shift
: shifts the value of sigmoid of normal distribution random numberflux_shift
: shifts the value of sigmoid of normal distribution random number, depending on the resolution (same as FLUX.1 dev inference).--discrete_flow_shift
is ignored whenflux_shift
is specified.
-
--sigmoid_scale
is the scale factor for sigmoid timestep sampling (only used when timestep-sampling is "sigmoid"). The default is 1.0. Larger values will make the sampling more uniform.- This option is effective even when
--timestep_sampling shift
is specified. - Normally, leave it at 1.0. Larger values make the value before shift closer to a uniform distribution.
- This option is effective even when
-
--model_prediction_type
is how to interpret and process the model prediction:raw
: use as is, same as x-fluxadditive
: add to noisy inputsigma_scaled
: apply sigma scaling, same as SD3
-
--discrete_flow_shift
is the discrete flow shift for the Euler Discrete Scheduler, default is 3.0 (same as SD3). -
--blocks_to_swap
. See FLUX.1 fine-tuning for details.
The existing --loss_type
option may be useful for FLUX.1 training. The default is l2
.
In our experiments, --timestep_sampling sigma --model_prediction_type raw --discrete_flow_shift 1.0
with --loss_type l2
seems to work better than the default (SD3) settings. The multiplier of LoRA should be adjusted.
In our experiments, --timestep_sampling shift --discrete_flow_shift 3.1582 --model_prediction_type raw --guidance_scale 1.0
(with the default l2
loss_type) seems to work better.
The settings in AI Toolkit by Ostris seems to be equivalent to --timestep_sampling sigmoid --model_prediction_type raw --guidance_scale 1.0
(with the default l2
loss_type).
Other settings may work better, so please try different settings.
Other options are described below.
--timestep_sampling
and --sigmoid_scale
, --discrete_flow_shift
adjust the distribution of timesteps. The distribution is shown in the figures below.
The effect of --discrete_flow_shift
with --timestep_sampling shift
(when --sigmoid_scale
is not specified, the default is 1.0):
The difference between --timestep_sampling sigmoid
and --timestep_sampling uniform
(when --timestep_sampling sigmoid
or uniform
is specified, --discrete_flow_shift
is ignored):
The effect of --timestep_sampling sigmoid
and --sigmoid_scale
(when --timestep_sampling sigmoid
is specified, --discrete_flow_shift
is ignored):
-
CLIP-L and T5XXL LoRA Support:
- FLUX.1 LoRA training now supports CLIP-L and T5XXL LoRA training.
- Remove
--network_train_unet_only
from your command. - Add
train_t5xxl=True
to--network_args
to train T5XXL LoRA. CLIP-L is also trained at the same time. - T5XXL output can be cached for CLIP-L LoRA training. So,
--cache_text_encoder_outputs
or--cache_text_encoder_outputs_to_disk
is also available. - The learning rates for CLIP-L and T5XXL can be specified separately. Multiple numbers can be specified in
--text_encoder_lr
. For example,--text_encoder_lr 1e-4 1e-5
. The first value is the learning rate for CLIP-L, and the second value is for T5XXL. If you specify only one, the learning rates for CLIP-L and T5XXL will be the same. If--text_encoder_lr
is not specified, the default learning rate--learning_rate
is used for both CLIP-L and T5XXL. - The trained LoRA can be used with ComfyUI.
- Note:
flux_extract_lora.py
,convert_flux_lora.py
andmerge_flux_lora.py
do not support CLIP-L and T5XXL LoRA yet.
trained LoRA option network_args cache_text_encoder_outputs (*1) FLUX.1 --network_train_unet_only
- o FLUX.1 + CLIP-L - - o (*2) FLUX.1 + CLIP-L + T5XXL - train_t5xxl=True
- CLIP-L (*3) --network_train_text_encoder_only
- o (*2) CLIP-L + T5XXL (*3) --network_train_text_encoder_only
train_t5xxl=True
- - *1:
--cache_text_encoder_outputs
or--cache_text_encoder_outputs_to_disk
is also available. - *2: T5XXL output can be cached for CLIP-L LoRA training.
- *3: Not tested yet.
-
Experimental FP8/FP16 mixed training:
--fp8_base_unet
enables training with fp8 for FLUX and bf16/fp16 for CLIP-L/T5XXL.- FLUX can be trained with fp8, and CLIP-L/T5XXL can be trained with bf16/fp16.
- When specifying this option, the
--fp8_base
option is automatically enabled.
-
Split Q/K/V Projection Layers (Experimental):
- Added an option to split the projection layers of q/k/v/txt in the attention and apply LoRA to each of them.
- Specify
"split_qkv=True"
in network_args like--network_args "split_qkv=True"
(train_blocks
is also available). - May increase expressiveness but also training time.
- The trained model is compatible with normal LoRA models in sd-scripts and can be used in environments like ComfyUI.
- Converting to AI-toolkit (Diffusers) format with
convert_flux_lora.py
will reduce the size.
-
T5 Attention Mask Application:
- T5 attention mask is applied when
--apply_t5_attn_mask
is specified. - Now applies mask when encoding T5 and in the attention of Double and Single Blocks
- Affects fine-tuning, LoRA training, and inference in
flux_minimal_inference.py
.
- T5 attention mask is applied when
-
Multi-resolution Training Support:
- FLUX.1 now supports multi-resolution training, even with caching latents to disk.
Technical details of Q/K/V split:
In the implementation of Black Forest Labs' model, the projection layers of q/k/v (and txt in single blocks) are concatenated into one. If LoRA is added there as it is, the LoRA module is only one, and the dimension is large. In contrast, in the implementation of Diffusers, the projection layers of q/k/v/txt are separated. Therefore, the LoRA module is applied to q/k/v/txt separately, and the dimension is smaller. This option is for training LoRA similar to the latter.
The compatibility of the saved model (state dict) is ensured by concatenating the weights of multiple LoRAs. However, since there are zero weights in some parts, the model size will be large.
You can specify the rank for each layer in FLUX.1 by specifying the following network_args. If you specify 0
, LoRA will not be applied to that layer.
When network_args is not specified, the default value (network_dim
) is applied, same as before.
network_args | target layer |
---|---|
img_attn_dim | img_attn in DoubleStreamBlock |
txt_attn_dim | txt_attn in DoubleStreamBlock |
img_mlp_dim | img_mlp in DoubleStreamBlock |
txt_mlp_dim | txt_mlp in DoubleStreamBlock |
img_mod_dim | img_mod in DoubleStreamBlock |
txt_mod_dim | txt_mod in DoubleStreamBlock |
single_dim | linear1 and linear2 in SingleStreamBlock |
single_mod_dim | modulation in SingleStreamBlock |
"verbose=True"
is also available for debugging. It shows the rank of each layer.
example:
--network_args "img_attn_dim=4" "img_mlp_dim=8" "txt_attn_dim=2" "txt_mlp_dim=2"
"img_mod_dim=2" "txt_mod_dim=2" "single_dim=4" "single_mod_dim=2" "verbose=True"
You can apply LoRA to the conditioning layers of Flux by specifying in_dims
in network_args. When specifying, be sure to specify 5 numbers in []
as a comma-separated list.
example:
--network_args "in_dims=[4,2,2,2,4]"
Each number corresponds to img_in
, time_in
, vector_in
, guidance_in
, txt_in
. The above example applies LoRA to all conditioning layers, with rank 4 for img_in
, 2 for time_in
, vector_in
, guidance_in
, and 4 for txt_in
.
If you specify 0
, LoRA will not be applied to that layer. For example, [4,0,0,0,4]
applies LoRA only to img_in
and txt_in
.
You can specify the blocks to train in FLUX.1 LoRA training by specifying train_double_block_indices
and train_single_block_indices
in network_args. The indices are 0-based. The default (when omitted) is to train all blocks. The indices are specified as a list of integers or a range of integers, like 0,1,5,8
or 0,1,4-5,7
. The number of double blocks is 19, and the number of single blocks is 38, so the valid range is 0-18 and 0-37, respectively. all
is also available to train all blocks, none
is also available to train no blocks.
example:
--network_args "train_double_block_indices=0,1,8-12,18" "train_single_block_indices=3,10,20-25,37"
--network_args "train_double_block_indices=none" "train_single_block_indices=10-15"
If you specify one of train_double_block_indices
or train_single_block_indices
, the other will be trained as usual.
We have added a new training script for ControlNet training. The script is flux_train_control_net.py. See --help for options.
Sample command is below. It will work with 80GB VRAM GPUs.
accelerate launch --mixed_precision bf16 --num_cpu_threads_per_process 1 flux_train_control_net.py
--pretrained_model_name_or_path flux1-dev.safetensors --clip_l clip_l.safetensors --t5xxl t5xxl_fp16.safetensors
--ae ae.safetensors --save_model_as safetensors --sdpa --persistent_data_loader_workers
--max_data_loader_n_workers 1 --seed 42 --gradient_checkpointing --mixed_precision bf16
--optimizer_type adamw8bit --learning_rate 2e-5
--highvram --max_train_epochs 1 --save_every_n_steps 1000 --dataset_config dataset.toml
--output_dir /path/to/output/dir --output_name flux-cn
--timestep_sampling shift --discrete_flow_shift 3.1582 --model_prediction_type raw --guidance_scale 1.0 --deepspeed
For 24GB VRAM GPUs, you can train with 16 blocks swapped and caching latents and text encoder outputs with the batch size of 1. Remove --deepspeed
. Sample command is below. Not fully tested.
--blocks_to_swap 16 --cache_latents_to_disk --cache_text_encoder_outputs_to_disk
The training can be done with 16GB VRAM GPUs with around 30 blocks swapped.
--gradient_accumulation_steps
is also available. The default value is 1 (no accumulation), but according to the original PR, 8 is used.
You can train OFT with almost the same options as LoRA, such as --timestamp_sampling
. The following points are different.
- Change
--network_module
fromnetworks.lora_flux
tonetworks.oft_flux
. --network_dim
is the number of OFT blocks. Unlike LoRA rank, the smaller the dim, the larger the model. We recommend about 64 or 128. Please make the output dimension of the target layer of OFT divisible by the value of--network_dim
(an error will occur if it is not divisible). Valid values are 64, 128, 256, 512, 1024, etc.--network_alpha
is treated as a constraint for OFT. We recommend about 1e-2 to 1e-4. The default value when omitted is 1, which is too large, so be sure to specify it.- CLIP/T5XXL is not supported. Specify
--network_train_unet_only
. --network_args
specifies the hyperparameters of OFT. The following are valid:- Specify
enable_all_linear=True
to target all linear connections in the MLP layer. The default is False, which targets only attention.
- Specify
Currently, there is no environment to infer FLUX.1 OFT. Inference is only possible with flux_minimal_inference.py
(specify OFT model with --lora
).
Sample command is below. It will work with 24GB VRAM GPUs with the batch size of 1.
--network_module networks.oft_flux --network_dim 128 --network_alpha 1e-3
--network_args "enable_all_linear=True" --learning_rate 1e-5
The training can be done with 16GB VRAM GPUs without --enable_all_linear
option and with Adafactor optimizer.
The inference script is also available. The script is flux_minimal_inference.py
. See --help
for options.
python flux_minimal_inference.py --ckpt flux1-dev.safetensors --clip_l sd3/clip_l.safetensors --t5xxl sd3/t5xxl_fp16.safetensors --ae ae.safetensors --dtype bf16 --prompt "a cat holding a sign that says hello world" --out path/to/output/dir --seed 1 --flux_dtype fp8 --offload --lora lora-flux-name.safetensors;1.0
The memory-efficient training with block swap is based on 2kpr's implementation. Thanks to 2kpr!
--double_blocks_to_swap
and --single_blocks_to_swap
are deprecated. These options is still available, but they will be removed in the future. Please use --blocks_to_swap
instead. These options are equivalent to specifying double_blocks_to_swap + single_blocks_to_swap // 2
in --blocks_to_swap
.
Sample command for FLUX.1 fine-tuning is below. This will work with 24GB VRAM GPUs, and 64GB main memory is recommended.
accelerate launch --mixed_precision bf16 --num_cpu_threads_per_process 1 flux_train.py
--pretrained_model_name_or_path flux1-dev.safetensors --clip_l clip_l.safetensors --t5xxl t5xxl_fp16.safetensors --ae ae_dev.safetensors
--save_model_as safetensors --sdpa --persistent_data_loader_workers --max_data_loader_n_workers 2
--seed 42 --gradient_checkpointing --mixed_precision bf16 --save_precision bf16
--dataset_config dataset_1024_bs1.toml --output_dir path/to/output/dir --output_name output-name
--learning_rate 5e-5 --max_train_epochs 4 --sdpa --highvram --cache_text_encoder_outputs_to_disk --cache_latents_to_disk --save_every_n_epochs 1
--optimizer_type adafactor --optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False"
--lr_scheduler constant_with_warmup --max_grad_norm 0.0
--timestep_sampling shift --discrete_flow_shift 3.1582 --model_prediction_type raw --guidance_scale 1.0
--fused_backward_pass --blocks_to_swap 8 --full_bf16
(The command is multi-line for readability. Please combine it into one line.)
Options are almost the same as LoRA training. The difference is --full_bf16
, --fused_backward_pass
and --blocks_to_swap
. --cpu_offload_checkpointing
is also available.
--full_bf16
enables the training with bf16 (weights and gradients).
--fused_backward_pass
enables the fusing of the optimizer step into the backward pass for each parameter. This reduces the memory usage during training. Only Adafactor optimizer is supported for now. Stochastic rounding is also enabled when --fused_backward_pass
and --full_bf16
are specified.
--blockwise_fused_optimizers
enables the fusing of the optimizer step into the backward pass for each block. This is similar to --fused_backward_pass
. Any optimizer can be used, but Adafactor is recommended for memory efficiency and stochastic rounding. --blockwise_fused_optimizers
cannot be used with --fused_backward_pass
. Stochastic rounding is not supported for now.
--blocks_to_swap
is the number of blocks to swap. The default is None (no swap). The maximum value is 35.
--cpu_offload_checkpointing
is to offload the gradient checkpointing to CPU. This reduces about 2GB of VRAM usage. This option cannot be used with --blocks_to_swap
.
All these options are experimental and may change in the future.
The increasing the number of blocks to swap may reduce the memory usage, but the training speed will be slower. --cpu_offload_checkpointing
also slows down the training.
Swap 8 blocks without cpu offload checkpointing may be a good starting point for 24GB VRAM GPUs. Please try different settings according to VRAM usage and training speed.
The learning rate and the number of epochs are not optimized yet. Please adjust them according to the training results.
There are two possible ways to use block swap. It is unknown which is better.
-
Swap the minimum number of blocks that fit in VRAM with batch size 1 and shorten the training speed of one step.
The above command example is for this usage.
-
Swap many blocks to increase the batch size and shorten the training speed per data.
For example, swapping 35 blocks seems to increase the batch size to about 5. In this case, the training speed per data will be relatively faster than 1.
Swap 28 blocks without cpu offload checkpointing may be working with 12GB VRAM GPUs. Please try different settings according to VRAM size of your GPU.
T5XXL requires about 10GB of VRAM, so 10GB of VRAM will be minimum requirement for FLUX.1 fine-tuning.
- Technical details of block swap:
- Reduce memory usage by transferring double and single blocks of FLUX.1 from GPU to CPU when they are not needed.
- During forward pass, the weights of the blocks that have finished calculation are transferred to CPU, and the weights of the blocks to be calculated are transferred to GPU.
- The same is true for the backward pass, but the order is reversed. The gradients remain on the GPU.
- Since the transfer between CPU and GPU takes time, the training will be slower.
--blocks_to_swap
specify the number of blocks to swap.- About 640MB of memory can be saved per block.
- (Update 1: Nov 12, 2024)
- The maximum number of blocks that can be swapped is 35.
- We are exchanging only the data of the weights (weight.data) in reference to the implementation of OneTrainer (thanks to OneTrainer). However, the mechanism of the exchange is a custom implementation.
- Since it takes time to free CUDA memory (torch.cuda.empty_cache()), we reuse the CUDA memory allocated to weight.data as it is and exchange the weights between modules.
- This shortens the time it takes to exchange weights between modules.
- Since the weights must be almost identical to be exchanged, FLUX.1 exchanges the weights between double blocks and single blocks.
- In SD3, all blocks are similar, but some weights are different, so there are weights that always remain on the GPU.
-
Sample Image Generation:
- Sample image generation during training is now supported.
- The prompts are cached and used for generation if
--cache_latents
is specified. So changing the prompts during training will not affect the generated images. - Specify options such as
--sample_prompts
and--sample_every_n_epochs
. - Note: It will be very slow when
--blocks_to_swap
is specified.
-
Experimental Memory-Efficient Saving:
--mem_eff_save
option can further reduce memory consumption during model saving (about 22GB).- This is a custom implementation and may cause unexpected issues. Use with caution.
-
T5XXL Token Length Control:
- Added
--t5xxl_max_token_length
option to specify the maximum token length of T5XXL. - Default is 512 in dev and 256 in schnell models.
- Added
-
Multi-GPU Training Support:
- Note:
--double_blocks_to_swap
and--single_blocks_to_swap
cannot be used in multi-GPU training.
- Note:
-
Disable mmap Load for Safetensors:
--disable_mmap_load_safetensors
option now works influx_train.py
.- Speeds up model loading during training in WSL2.
- Effective in reducing memory usage when loading models during multi-GPU training.
Script: networks/flux_extract_lora.py
Extracts LoRA from the difference between two FLUX.1 models.
Offers memory-efficient option with --mem_eff_safe_open
.
CLIP-L LoRA is not supported.
Script: convert_flux_lora.py
Converts LoRA between sd-scripts format (BFL-based) and AI-toolkit format (Diffusers-based).
If you use LoRA in the inference environment, converting it to AI-toolkit format may reduce temporary memory usage.
Note that re-conversion will increase the size of LoRA.
CLIP-L/T5XXL LoRA is not supported.
networks/flux_merge_lora.py
merges LoRA to FLUX.1 checkpoint, CLIP-L or T5XXL models. The script is experimental.
python networks/flux_merge_lora.py --flux_model flux1-dev.safetensors --save_to output.safetensors --models lora1.safetensors --ratios 2.0 --save_precision fp16 --loading_device cuda --working_device cpu
You can also merge multiple LoRA models into a FLUX.1 model. Specify multiple LoRA models in --models
. Specify the same number of ratios in --ratios
.
CLIP-L and T5XXL LoRA are supported. --clip_l
and --clip_l_save_to
are for CLIP-L, --t5xxl
and --t5xxl_save_to
are for T5XXL. Sample command is below.
--clip_l clip_l.safetensors --clip_l_save_to merged_clip_l.safetensors --t5xxl t5xxl_fp16.safetensors --t5xxl_save_to merged_t5xxl.safetensors
FLUX.1, CLIP-L, and T5XXL can be merged together or separately for memory efficiency.
An experimental option --mem_eff_load_save
is available. This option is for memory-efficient loading and saving. It may also speed up loading and saving.
--loading_device
is the device to load the LoRA models. --working_device
is the device to merge (calculate) the models. Default is cpu
for both. Loading / working device examples are below (in the case of --save_precision fp16
or --save_precision bf16
, float32
will consume more memory):
- 'cpu' / 'cpu': Uses >50GB of RAM, but works on any machine.
- 'cuda' / 'cpu': Uses 24GB of VRAM, but requires 30GB of RAM.
- 'cpu' / 'cuda': Uses 4GB of VRAM, but requires 50GB of RAM, faster than 'cpu' / 'cpu' or 'cuda' / 'cpu'.
- 'cuda' / 'cuda': Uses 30GB of VRAM, but requires 30GB of RAM, faster than 'cpu' / 'cpu' or 'cuda' / 'cpu'.
--save_precision
is the precision to save the merged model. In the case of LoRA models are trained with bf16
, we are not sure which is better, fp16
or bf16
for --save_precision
.
The script can merge multiple LoRA models. If you want to merge multiple LoRA models, specify --concat
option to work the merged LoRA model properly.
You can define multiple resolutions in the dataset configuration file.
The dataset configuration file is like below. You can define multiple resolutions with different batch sizes. The resolutions are defined in the [[datasets]]
section. The [[datasets.subsets]]
section is for the dataset directory. Please specify the same directory for each resolution.
[general]
# define common settings here
flip_aug = true
color_aug = false
keep_tokens_separator= "|||"
shuffle_caption = false
caption_tag_dropout_rate = 0
caption_extension = ".txt"
[[datasets]]
# define the first resolution here
batch_size = 2
enable_bucket = true
resolution = [1024, 1024]
[[datasets.subsets]]
image_dir = "path/to/image/dir"
num_repeats = 1
[[datasets]]
# define the second resolution here
batch_size = 3
enable_bucket = true
resolution = [768, 768]
[[datasets.subsets]]
image_dir = "path/to/image/dir"
num_repeats = 1
[[datasets]]
# define the third resolution here
batch_size = 4
enable_bucket = true
resolution = [512, 512]
[[datasets.subsets]]
image_dir = "path/to/image/dir"
num_repeats = 1
Script: convert_diffusers_to_flux1.py
Converts Diffusers models to FLUX.1 models. The script is experimental. See --help
for options. schnell and dev models are supported. AE/CLIP/T5XXL are not supported. The diffusers folder is a parent folder of rmer
folder.
python tools/convert_diffusers_to_flux.py --diffusers_path path/to/diffusers_folder_or_00001_safetensors --save_to path/to/flux1.safetensors --mem_eff_load_save --save_precision bf16
SD3.5L/M training is now available.
The script is sd3_train_network.py
. See --help
for options.
SD3 model, CLIP-L, CLIP-G, and T5XXL models are recommended to be in float/fp16 format. If you specify --fp8_base
, you can use fp8 models for SD3. The fp8 model is only compatible with float8_e4m3fn
format.
Sample command is below. It will work with 16GB VRAM GPUs (SD3.5L).
accelerate launch --mixed_precision bf16 --num_cpu_threads_per_process 1 sd3_train_network.py
--pretrained_model_name_or_path path/to/sd3.5_large.safetensors --clip_l sd3/clip_l.safetensors --clip_g sd3/clip_g.safetensors --t5xxl sd3/t5xxl_fp16.safetensors
--cache_latents_to_disk --save_model_as safetensors --sdpa --persistent_data_loader_workers
--max_data_loader_n_workers 2 --seed 42 --gradient_checkpointing --mixed_precision bf16 --save_precision bf16
--network_module networks.lora_sd3 --network_dim 4 --network_train_unet_only
--optimizer_type adamw8bit --learning_rate 1e-4
--cache_text_encoder_outputs --cache_text_encoder_outputs_to_disk --fp8_base
--highvram --max_train_epochs 4 --save_every_n_epochs 1 --dataset_config dataset_1024_bs2.toml
--output_dir path/to/output/dir --output_name sd3-lora-name
(The command is multi-line for readability. Please combine it into one line.)
Like FLUX.1 training, the --blocks_to_swap
option for memory reduction is available. The maximum number of blocks that can be swapped is 36 for SD3.5L and 22 for SD3.5M.
Adafactor optimizer is also available.
--cpu_offload_checkpointing
option is not available.
We also not sure how many epochs are needed for convergence, and how the learning rate should be adjusted.
The trained LoRA model can be used with ComfyUI.
Here are the arguments. The arguments and sample settings are still experimental and may change in the future. Feedback on the settings is welcome.
--network_module
is the module for LoRA training. Specifynetworks.lora_sd3
for SD3 LoRA training.--pretrained_model_name_or_path
is the path to the pretrained model (SD3/3.5). If you specify--fp8_base
, you can use fp8 models for SD3/3.5. The fp8 model is only compatible withfloat8_e4m3fn
format.--clip_l
is the path to the CLIP-L model.--clip_g
is the path to the CLIP-G model.--t5xxl
is the path to the T5XXL model. If you specify--fp8_base
, you can use fp8 (float8_e4m3fn) models for T5XXL. However, it is recommended to use fp16 models for caching.--vae
is the path to the autoencoder model. This option is not necessary for SD3. VAE is included in the standard SD3 model.--disable_mmap_load_safetensors
is to disable memory mapping when loading safetensors. This option significantly reduces the memory usage when loading models for Windows users.--clip_l_dropout_rate
,--clip_g_dropout_rate
and--t5_dropout_rate
are the dropout rates for the embeddings of CLIP-L, CLIP-G, and T5XXL, described in SAI research papre. The default is 0.0. For LoRA training, it is seems to be better to set 0.0.--pos_emb_random_crop_rate
is the rate of random cropping of positional embeddings, described in SD3.5M model card. The default is 0. It is seems to be better to set 0.0 for LoRA training.--enable_scaled_pos_embed
is to enable the scaled positional embeddings. The default is False. This option is an experimental feature for SD3.5M. Details are described below.--training_shift
is the shift value for the training distribution of timesteps. The default is 1.0 (uniform distribution, no shift). If less than 1.0, the side closer to the image is more sampled, and if more than 1.0, the side closer to noise is more sampled.
Other options are described below.
-
CLIP-L, G and T5XXL LoRA Support:
- SD3 LoRA training now supports CLIP-L, CLIP-G and T5XXL LoRA training.
- Remove
--network_train_unet_only
from your command. - Add
train_t5xxl=True
to--network_args
to train T5XXL LoRA. CLIP-L and G is also trained at the same time. - T5XXL output can be cached for CLIP-L and G LoRA training. So,
--cache_text_encoder_outputs
or--cache_text_encoder_outputs_to_disk
is also available. - The learning rates for CLIP-L, CLIP-G and T5XXL can be specified separately. Multiple numbers can be specified in
--text_encoder_lr
. For example,--text_encoder_lr 1e-4 1e-5 5e-6
. The first value is the learning rate for CLIP-L, the second value is for CLIP-G, and the third value is for T5XXL. If you specify only one, the learning rates for CLIP-L, CLIP-G and T5XXL will be the same. If the third value is not specified, the second value is used for T5XXL. If--text_encoder_lr
is not specified, the default learning rate--learning_rate
is used for both CLIP-L and T5XXL. - The trained LoRA can be used with ComfyUI.
trained LoRA option network_args cache_text_encoder_outputs (*1) MMDiT --network_train_unet_only
- o MMDiT + CLIP-L + CLIP-G - - o (*2) MMDiT + CLIP-L + CLIP-G + T5XXL - train_t5xxl=True
- CLIP-L + CLIP-G (*3) --network_train_text_encoder_only
- o (*2) CLIP-L + CLIP-G + T5XXL (*3) --network_train_text_encoder_only
train_t5xxl=True
- - *1:
--cache_text_encoder_outputs
or--cache_text_encoder_outputs_to_disk
is also available. - *2: T5XXL output can be cached for CLIP-L and G LoRA training.
- *3: Not tested yet.
-
Experimental FP8/FP16 mixed training:
--fp8_base_unet
enables training with fp8 for MMDiT and bf16/fp16 for CLIP-L/G/T5XXL.- When specifying this option, the
--fp8_base
option is automatically enabled.
-
Split Q/K/V Projection Layers (Experimental):
- Same as FLUX.1.
-
CLIP-L/G and T5 Attention Mask Application:
- This function is planned to be implemented in the future.
-
Multi-resolution Training Support:
- Only for SD3.5M.
- Same as FLUX.1 for data preparation.
- If you train with multiple resolutions, you can enable the scaled positional embeddings with
--enable_scaled_pos_embed
. The default is False. This option is an experimental feature.
-
Weighting scheme and training shift:
- The weighting scheme is described in the section 3.1 of the SD3 paper.
- The uniform distribution is the default. If you want to change the distribution, see
--help
for options. --training_shift
is the shift value for the training distribution of timesteps.- The effect of a shift in uniform distribution is shown in the figure below.
Technical details of multi-resolution training for SD3.5M:
SD3.5M does not use scaled positional embeddings for multi-resolution training, and is trained with a single positional embedding. Therefore, this feature is very experimental.
Generally, in multi-resolution training, the values of the positional embeddings must be the same for each resolution. That is, the same value must be in the same position for 512x512, 768x768, and 1024x1024. To achieve this, the positional embeddings for each resolution are calculated in advance and switched according to the resolution of the training data. This feature is enabled by --enable_scaled_pos_embed
.
This idea and the code for calculating scaled positional embeddings are contributed by KohakuBlueleaf. Thanks to KohakuBlueleaf!
You can specify the rank for each layer in SD3 by specifying the following network_args. If you specify 0
, LoRA will not be applied to that layer.
When network_args is not specified, the default value (network_dim
) is applied, same as before.
network_args | target layer |
---|---|
context_attn_dim | attn in context_block |
context_mlp_dim | mlp in context_block |
context_mod_dim | adaLN_modulation in context_block |
x_attn_dim | attn in x_block |
x_mlp_dim | mlp in x_block |
x_mod_dim | adaLN_modulation in x_block |
"verbose=True"
is also available for debugging. It shows the rank of each layer.
example:
--network_args "context_attn_dim=2" "context_mlp_dim=3" "context_mod_dim=4" "x_attn_dim=5" "x_mlp_dim=6" "x_mod_dim=7" "verbose=True"
You can apply LoRA to the conditioning layers of SD3 by specifying emb_dims
in network_args. When specifying, be sure to specify 6 numbers in []
as a comma-separated list.
example:
--network_args "emb_dims=[2,3,4,5,6,7]"
Each number corresponds to context_embedder
, t_embedder
, x_embedder
, y_embedder
, final_layer_adaLN_modulation
, final_layer_linear
. The above example applies LoRA to all conditioning layers, with rank 2 for context_embedder
, 3 for t_embedder
, 4 for context_embedder
, 5 for y_embedder
, 6 for final_layer_adaLN_modulation
, and 7 for final_layer_linear
.
If you specify 0
, LoRA will not be applied to that layer. For example, [4,0,0,4,0,0]
applies LoRA only to context_embedder
and y_embedder
.
You can specify the blocks to train in SD3 LoRA training by specifying train_block_indices
in network_args. The indices are 0-based. The default (when omitted) is to train all blocks. The indices are specified as a list of integers or a range of integers, like 0,1,5,8
or 0,1,4-5,7
.
The number of blocks depends on the model. The valid range is 0-(the number of blocks - 1). all
is also available to train all blocks, none
is also available to train no blocks.
example:
--network_args "train_block_indices=1,2,6-8"
The inference script is also available. The script is sd3_minimal_inference.py
. See --help
for options.
Documentation is not available yet. Please refer to the FLUX.1 fine-tuning guide for now. The major difference are following:
--clip_g
is also available for SD3 fine-tuning.--timestep_sampling
--discrete_flow_shift``--model_prediction_type
--guidance_scale` are not necessary for SD3 fine-tuning.- Use
--vae
instead of--ae
if necessary. This option is not necessary for SD3. VAE is included in the standard SD3 model. --disable_mmap_load_safetensors
is available. This option significantly reduces the memory usage when loading models for Windows users.--cpu_offload_checkpointing
is not available for SD3 fine-tuning.--clip_l_dropout_rate
,--clip_g_dropout_rate
and--t5_dropout_rate
are available same as LoRA training.--pos_emb_random_crop_rate
and--enable_scaled_pos_embed
are available for SD3.5M fine-tuning.- Training text encoders is available with
--train_text_encoder
option, similar to SDXL training.- CLIP-L and G can be trained with
--train_text_encoder
option. Training T5XXL needs--train_t5xxl
option. - If you use the cached text encoder outputs for T5XXL with training CLIP-L and G, specify
--use_t5xxl_cache_only
. This option enables to use the cached text encoder outputs for T5XXL only. - The learning rates for CLIP-L, CLIP-G and T5XXL can be specified separately.
--text_encoder_lr1
,--text_encoder_lr2
and--text_encoder_lr3
are available.
- CLIP-L and G can be trained with
Not available yet.
Not available yet.
Not available yet.
Change History is moved to the bottom of the page. 更新履歴はページ末尾に移しました。
The development version is in the dev
branch. Please check the dev branch for the latest changes.
FLUX.1 and SD3/SD3.5 support is done in the sd3
branch. If you want to train them, please use the sd3 branch.
For easier use (GUI and PowerShell scripts etc...), please visit the repository maintained by bmaltais. Thanks to @bmaltais!
This repository contains the scripts for:
- DreamBooth training, including U-Net and Text Encoder
- Fine-tuning (native training), including U-Net and Text Encoder
- LoRA training
- Textual Inversion training
- Image generation
- Model conversion (supports 1.x and 2.x, Stable Diffision ckpt/safetensors and Diffusers)
The file does not contain requirements for PyTorch. Because the version of PyTorch depends on the environment, it is not included in the file. Please install PyTorch first according to the environment. See installation instructions below.
The scripts are tested with Pytorch 2.1.2. 2.0.1 and 1.12.1 is not tested but should work.
Most of the documents are written in Japanese.
English translation by darkstorm2150 is here. Thanks to darkstorm2150!
- Training guide - common : data preparation, options etc...
- SDXL training (English version)
- Dataset config
- DreamBooth training guide
- Step by Step fine-tuning guide:
- Training LoRA
- Training Textual Inversion
- Image generation
- note.com Model conversion
Python 3.10.6 and Git:
- Python 3.10.6: https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- git: https://git-scm.com/download/win
Give unrestricted script access to powershell so venv can work:
- Open an administrator powershell window
- Type
Set-ExecutionPolicy Unrestricted
and answer A - Close admin powershell window
Open a regular Powershell terminal and type the following inside:
git clone https://github.com/kohya-ss/sd-scripts.git
cd sd-scripts
python -m venv venv
.\venv\Scripts\activate
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu118
pip install --upgrade -r requirements.txt
pip install xformers==0.0.23.post1 --index-url https://download.pytorch.org/whl/cu118
accelerate config
If python -m venv
shows only python
, change python
to py
.
Note: Now bitsandbytes==0.43.0
, prodigyopt==1.0
and lion-pytorch==0.0.6
are included in the requirements.txt. If you'd like to use the another version, please install it manually.
This installation is for CUDA 11.8. If you use a different version of CUDA, please install the appropriate version of PyTorch and xformers. For example, if you use CUDA 12, please install pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu121
and pip install xformers==0.0.23.post1 --index-url https://download.pytorch.org/whl/cu121
.
Answers to accelerate config:
- This machine
- No distributed training
- NO
- NO
- NO
- all
- fp16
If you'd like to use bf16, please answer bf16
to the last question.
Note: Some user reports ValueError: fp16 mixed precision requires a GPU
is occurred in training. In this case, answer 0
for the 6th question:
What GPU(s) (by id) should be used for training on this machine as a comma-separated list? [all]:
(Single GPU with id 0
will be used.)
When a new release comes out you can upgrade your repo with the following command:
cd sd-scripts
git pull
.\venv\Scripts\activate
pip install --use-pep517 --upgrade -r requirements.txt
Once the commands have completed successfully you should be ready to use the new version.
If you want to upgrade PyTorch, you can upgrade it with pip install
command in Windows Installation section. xformers
is also required to be upgraded when PyTorch is upgraded.
The implementation for LoRA is based on cloneofsimo's repo. Thank you for great work!
The LoRA expansion to Conv2d 3x3 was initially released by cloneofsimo and its effectiveness was demonstrated at LoCon by KohakuBlueleaf. Thank you so much KohakuBlueleaf!
The majority of scripts is licensed under ASL 2.0 (including codes from Diffusers, cloneofsimo's and LoCon), however portions of the project are available under separate license terms:
Memory Efficient Attention Pytorch: MIT
bitsandbytes: MIT
BLIP: BSD-3-Clause
-
important The dependent libraries are updated. Please see Upgrade and update the libraries.
- bitsandbytes, transformers, accelerate and huggingface_hub are updated.
- If you encounter any issues, please report them.
-
Fixed a bug where the loss weight was incorrect when
--debiased_estimation_loss
was specified with--v_parameterization
. PR #1715 Thanks to catboxanon! See the PR for details.- Removed the warning when
--v_parameterization
is specified in SDXL and SD1.5. PR #1717
- Removed the warning when
-
There was a bug where the min_bucket_reso/max_bucket_reso in the dataset configuration did not create the correct resolution bucket if it was not divisible by bucket_reso_steps. These values are now warned and automatically rounded to a divisible value. Thanks to Maru-mee for raising the issue. Related PR #1632
-
bitsandbytes
is updated to 0.44.0. Now you can useAdEMAMix8bit
andPagedAdEMAMix8bit
in the training script. PR #1640 Thanks to sdbds!- There is no abbreviation, so please specify the full path like
--optimizer_type bitsandbytes.optim.AdEMAMix8bit
(not bnb but bitsandbytes).
- There is no abbreviation, so please specify the full path like
-
Fixed a bug in the cache of latents. When
flip_aug
,alpha_mask
, andrandom_crop
are different in multiple subsets in the dataset configuration file (.toml), the last subset is used instead of reflecting them correctly. -
Fixed an issue where the timesteps in the batch were the same when using Huber loss. PR #1628 Thanks to recris!
-
Improvements in OFT (Orthogonal Finetuning) Implementation
- Optimization of Calculation Order:
- Changed the calculation order in the forward method from (Wx)R to W(xR).
- This has improved computational efficiency and processing speed.
- Correction of Bias Application:
- In the previous implementation, R was incorrectly applied to the bias.
- The new implementation now correctly handles bias by using F.conv2d and F.linear.
- Efficiency Enhancement in Matrix Operations:
- Introduced einsum in both the forward and merge_to methods.
- This has optimized matrix operations, resulting in further speed improvements.
- Proper Handling of Data Types:
- Improved to use torch.float32 during calculations and convert results back to the original data type.
- This maintains precision while ensuring compatibility with the original model.
- Unified Processing for Conv2d and Linear Layers:
- Implemented a consistent method for applying OFT to both layer types.
-
These changes have made the OFT implementation more efficient and accurate, potentially leading to improved model performance and training stability.
-
Additional Information
-
Recommended α value for OFT constraint: We recommend using α values between 1e-4 and 1e-2. This differs slightly from the original implementation of "(α*out_dim*out_dim)". Our implementation uses "(α*out_dim)", hence we recommend higher values than the 1e-5 suggested in the original implementation.
-
Performance Improvement: Training speed has been improved by approximately 30%.
-
Inference Environment: This implementation is compatible with and operates within Stable Diffusion web UI (SD1/2 and SDXL).
-
- Optimization of Calculation Order:
-
The INVERSE_SQRT, COSINE_WITH_MIN_LR, and WARMUP_STABLE_DECAY learning rate schedules are now available in the transformers library. See PR #1393 for details. Thanks to sdbds!
- See the transformers documentation for details on each scheduler.
--lr_warmup_steps
and--lr_decay_steps
can now be specified as a ratio of the number of training steps, not just the step value. Example:--lr_warmup_steps=0.1
or--lr_warmup_steps=10%
, etc.
-
When enlarging images in the script (when the size of the training image is small and bucket_no_upscale is not specified), it has been changed to use Pillow's resize and LANCZOS interpolation instead of OpenCV2's resize and Lanczos4 interpolation. The quality of the image enlargement may be slightly improved. PR #1426 Thanks to sdbds!
-
Sample image generation during training now works on non-CUDA devices. PR #1433 Thanks to millie-v!
-
--v_parameterization
is available insdxl_train.py
. The results are unpredictable, so use with caution. PR #1505 Thanks to liesened! -
Fused optimizer is available for SDXL training. PR #1259 Thanks to 2kpr!
- The memory usage during training is significantly reduced by integrating the optimizer's backward pass with step. The training results are the same as before, but if you have plenty of memory, the speed will be slower.
- Specify the
--fused_backward_pass
option insdxl_train.py
. At this time, only Adafactor is supported. Gradient accumulation is not available. - Setting mixed precision to
no
seems to use less memory thanfp16
orbf16
. - Training is possible with a memory usage of about 17GB with a batch size of 1 and fp32. If you specify the
--full_bf16
option, you can further reduce the memory usage (but the accuracy will be lower). With the same memory usage as before, you can increase the batch size. - PyTorch 2.1 or later is required because it uses the new API
Tensor.register_post_accumulate_grad_hook(hook)
. - Mechanism: Normally, backward -> step is performed for each parameter, so all gradients need to be temporarily stored in memory. "Fuse backward and step" reduces memory usage by performing backward/step for each parameter and reflecting the gradient immediately. The more parameters there are, the greater the effect, so it is not effective in other training scripts (LoRA, etc.) where the memory usage peak is elsewhere, and there are no plans to implement it in those training scripts.
-
Optimizer groups feature is added to SDXL training. PR #1319
- Memory usage is reduced by the same principle as Fused optimizer. The training results and speed are the same as Fused optimizer.
- Specify the number of groups like
--fused_optimizer_groups 10
insdxl_train.py
. Increasing the number of groups reduces memory usage but slows down training. Since the effect is limited to a certain number, it is recommended to specify 4-10. - Any optimizer can be used, but optimizers that automatically calculate the learning rate (such as D-Adaptation and Prodigy) cannot be used. Gradient accumulation is not available.
--fused_optimizer_groups
cannot be used with--fused_backward_pass
. When using Adafactor, the memory usage is slightly larger than with Fused optimizer. PyTorch 2.1 or later is required.- Mechanism: While Fused optimizer performs backward/step for individual parameters within the optimizer, optimizer groups reduce memory usage by grouping parameters and creating multiple optimizers to perform backward/step for each group. Fused optimizer requires implementation on the optimizer side, while optimizer groups are implemented only on the training script side.
-
LoRA+ is supported. PR #1233 Thanks to rockerBOO!
- LoRA+ is a method to improve training speed by increasing the learning rate of the UP side (LoRA-B) of LoRA. Specify the multiple. The original paper recommends 16, but adjust as needed. Please see the PR for details.
- Specify
loraplus_lr_ratio
with--network_args
. Example:--network_args "loraplus_lr_ratio=16"
loraplus_unet_lr_ratio
andloraplus_lr_ratio
can be specified separately for U-Net and Text Encoder.- Example:
--network_args "loraplus_unet_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"
or--network_args "loraplus_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"
etc.
- Example:
network_module
networks.lora
andnetworks.dylora
are available.
-
The feature to use the transparency (alpha channel) of the image as a mask in the loss calculation has been added. PR #1223 Thanks to u-haru!
- The transparent part is ignored during training. Specify the
--alpha_mask
option in the training script or specifyalpha_mask = true
in the dataset configuration file. - See About masked loss for details.
- The transparent part is ignored during training. Specify the
-
LoRA training in SDXL now supports block-wise learning rates and block-wise dim (rank). PR #1331
- Specify the learning rate and dim (rank) for each block.
- See Block-wise learning rates in LoRA for details (Japanese only).
-
Negative learning rates can now be specified during SDXL model training. PR #1277 Thanks to Cauldrath!
- The model is trained to move away from the training images, so the model is easily collapsed. Use with caution. A value close to 0 is recommended.
- When specifying from the command line, use
=
like--learning_rate=-1e-7
.
-
Training scripts can now output training settings to wandb or Tensor Board logs. Specify the
--log_config
option. PR #1285 Thanks to ccharest93, plucked, rockerBOO, and VelocityRa!- Some settings, such as API keys and directory specifications, are not output due to security issues.
-
The ControlNet training script
train_controlnet.py
for SD1.5/2.x was not working, but it has been fixed. PR #1284 Thanks to sdbds! -
train_network.py
andsdxl_train_network.py
now restore the order/position of data loading from DataSet when resuming training. PR #1353 #1359 Thanks to KohakuBlueleaf!- This resolves the issue where the order of data loading from DataSet changes when resuming training.
- Specify the
--skip_until_initial_step
option to skip data loading until the specified step. If not specified, data loading starts from the beginning of the DataSet (same as before). - If
--resume
is specified, the step saved in the state is used. - Specify the
--initial_step
or--initial_epoch
option to skip data loading until the specified step or epoch. Use these options in conjunction with--skip_until_initial_step
. These options can be used without--resume
(use them when resuming training with--network_weights
).
-
An option
--disable_mmap_load_safetensors
is added to disable memory mapping when loading the model's .safetensors in SDXL. PR #1266 Thanks to Zovjsra!- It seems that the model file loading is faster in the WSL environment etc.
- Available in
sdxl_train.py
,sdxl_train_network.py
,sdxl_train_textual_inversion.py
, andsdxl_train_control_net_lllite.py
.
-
When there is an error in the cached latents file on disk, the file name is now displayed. PR #1278 Thanks to Cauldrath!
-
Fixed an error that occurs when specifying
--max_dataloader_n_workers
intag_images_by_wd14_tagger.py
when Onnx is not used. PR #1291 issue #1290 Thanks to frodo821! -
Fixed a bug that
caption_separator
cannot be specified in the subset in the dataset settings .toml file. #1312 and #1313 Thanks to rockerBOO! -
Fixed a potential bug in ControlNet-LLLite training. PR #1322 Thanks to aria1th!
-
Fixed some bugs when using DeepSpeed. Related #1247
-
Added a prompt option
--f
togen_imgs.py
to specify the file name when saving. Also, Diffusers-based keys for LoRA weights are now supported. -
SDXL の学習時に Fused optimizer が使えるようになりました。PR #1259 2kpr 氏に感謝します。
- optimizer の backward pass に step を統合することで学習時のメモリ使用量を大きく削減します。学習結果は未適用時と同一ですが、メモリが潤沢にある場合は速度は遅くなります。
sdxl_train.py
に--fused_backward_pass
オプションを指定してください。現時点では optimizer は Adafactor のみ対応しています。また gradient accumulation は使えません。- mixed precision は
no
のほうがfp16
やbf16
よりも使用メモリ量が少ないようです。 - バッチサイズ 1、fp32 で 17GB 程度で学習可能なようです。
--full_bf16
オプションを指定するとさらに削減できます(精度は劣ります)。以前と同じメモリ使用量ではバッチサイズを増やせます。 - PyTorch 2.1 以降の新 API
Tensor.register_post_accumulate_grad_hook(hook)
を使用しているため、PyTorch 2.1 以降が必要です。 - 仕組み:通常は backward -> step の順で行うためすべての勾配を一時的にメモリに保持する必要があります。「backward と step の統合」はパラメータごとに backward/step を行って、勾配をすぐ反映することでメモリ使用量を削減します。パラメータ数が多いほど効果が大きいため、SDXL の学習以外(LoRA 等)ではほぼ効果がなく(メモリ使用量のピークが他の場所にあるため)、それらの学習スクリプトへの実装予定もありません。
-
SDXL の学習時に optimizer group 機能を追加しました。PR #1319
- Fused optimizer と同様の原理でメモリ使用量を削減します。学習結果や速度についても同様です。
sdxl_train.py
に--fused_optimizer_groups 10
のようにグループ数を指定してください。グループ数を増やすとメモリ使用量が削減されますが、速度は遅くなります。ある程度の数までしか効果がないため、4~10 程度を指定すると良いでしょう。- 任意の optimizer が使えますが、学習率を自動計算する optimizer (D-Adaptation や Prodigy など)は使えません。gradient accumulation は使えません。
--fused_optimizer_groups
は--fused_backward_pass
と併用できません。AdaFactor 使用時は Fused optimizer よりも若干メモリ使用量は大きくなります。PyTorch 2.1 以降が必要です。- 仕組み:Fused optimizer が optimizer 内で個別のパラメータについて backward/step を行っているのに対して、optimizer groups はパラメータをグループ化して複数の optimizer を作成し、それぞれ backward/step を行うことでメモリ使用量を削減します。Fused optimizer は optimizer 側の実装が必要ですが、optimizer groups は学習スクリプト側のみで実装されています。やはり SDXL の学習でのみ効果があります。
-
LoRA+ がサポートされました。PR #1233 rockerBOO 氏に感謝します。
- LoRA の UP 側(LoRA-B)の学習率を上げることで学習速度の向上を図る手法です。倍数で指定します。元の論文では 16 が推奨されていますが、データセット等にもよりますので、適宜調整してください。PR もあわせてご覧ください。
--network_args
でloraplus_lr_ratio
を指定します。例:--network_args "loraplus_lr_ratio=16"
loraplus_unet_lr_ratio
とloraplus_lr_ratio
で、U-Net および Text Encoder に個別の値を指定することも可能です。- 例:
--network_args "loraplus_unet_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"
または--network_args "loraplus_lr_ratio=16" "loraplus_text_encoder_lr_ratio=4"
など
- 例:
network_module
のnetworks.lora
およびnetworks.dylora
で使用可能です。
-
画像の透明度(アルファチャネル)をロス計算時のマスクとして使用する機能が追加されました。PR #1223 u-haru 氏に感謝します。
- 透明部分が学習時に無視されるようになります。学習スクリプトに
--alpha_mask
オプションを指定するか、データセット設定ファイルにalpha_mask = true
を指定してください。 - 詳細は マスクロスについて をご覧ください。
- 透明部分が学習時に無視されるようになります。学習スクリプトに
-
SDXL の LoRA で階層別学習率、階層別 dim (rank) をサポートしました。PR #1331
- ブロックごとに学習率および dim (rank) を指定することができます。
- 詳細は LoRA の階層別学習率 をご覧ください。
-
sdxl_train.py
での SDXL モデル学習時に負の学習率が指定できるようになりました。PR #1277 Cauldrath 氏に感謝します。- 学習画像から離れるように学習するため、モデルは容易に崩壊します。注意して使用してください。0 に近い値を推奨します。
- コマンドラインから指定する場合、
--learning_rate=-1e-7
のように=
を使ってください。
-
各学習スクリプトで学習設定を wandb や Tensor Board などのログに出力できるようになりました。
--log_config
オプションを指定してください。PR #1285 ccharest93 氏、plucked 氏、rockerBOO 氏および VelocityRa 氏に感謝します。- API キーや各種ディレクトリ指定など、一部の設定はセキュリティ上の問題があるため出力されません。
-
SD1.5/2.x 用の ControlNet 学習スクリプト
train_controlnet.py
が動作しなくなっていたのが修正されました。PR #1284 sdbds 氏に感謝します。 -
train_network.py
およびsdxl_train_network.py
で、学習再開時に DataSet の読み込み順についても復元できるようになりました。PR #1353 #1359 KohakuBlueleaf 氏に感謝します。- これにより、学習再開時に DataSet の読み込み順が変わってしまう問題が解消されます。
--skip_until_initial_step
オプションを指定すると、指定したステップまで DataSet 読み込みをスキップします。指定しない場合の動作は変わりません(DataSet の最初から読み込みます)--resume
オプションを指定すると、state に保存されたステップ数が使用されます。--initial_step
または--initial_epoch
オプションを指定すると、指定したステップまたはエポックまで DataSet 読み込みをスキップします。これらのオプションは--skip_until_initial_step
と併用してください。またこれらのオプションは--resume
と併用しなくても使えます(--network_weights
を用いた学習再開時などにお使いください )。
-
SDXL でモデルの .safetensors を読み込む際にメモリマッピングを無効化するオプション
--disable_mmap_load_safetensors
が追加されました。PR #1266 Zovjsra 氏に感謝します。- WSL 環境等でモデルファイルの読み込みが高速化されるようです。
sdxl_train.py
、sdxl_train_network.py
、sdxl_train_textual_inversion.py
、sdxl_train_control_net_lllite.py
で使用可能です。
-
ディスクにキャッシュされた latents ファイルに何らかのエラーがあったとき、そのファイル名が表示されるようになりました。 PR #1278 Cauldrath 氏に感謝します。
-
tag_images_by_wd14_tagger.py
で Onnx 未使用時に--max_dataloader_n_workers
を指定するとエラーになる不具合が修正されました。 PR #1291 issue #1290 frodo821 氏に感謝します。 -
データセット設定の .toml ファイルで、
caption_separator
が subset に指定できない不具合が修正されました。 PR #1312 および #1313 rockerBOO 氏に感謝します。 -
ControlNet-LLLite 学習時の潜在バグが修正されました。 PR #1322 aria1th 氏に感謝します。
-
DeepSpeed 使用時のいくつかのバグを修正しました。関連 #1247
-
gen_imgs.py
のプロンプトオプションに、保存時のファイル名を指定する--f
オプションを追加しました。また同スクリプトで Diffusers ベースのキーを持つ LoRA の重みに対応しました。
svd_merge_lora.py
VRAM usage has been reduced. However, main memory usage will increase (32GB is sufficient).- This will be included in the next release.
svd_merge_lora.py
のVRAM使用量を削減しました。ただし、メインメモリの使用量は増加します(32GBあれば十分です)。- これは次回リリースに含まれます。
-
Fixed a bug in
svd_merge_lora.py
,sdxl_merge_lora.py
, andresize_lora.py
where the hash value of LoRA metadata was not correctly calculated when thesave_precision
was different from theprecision
used in the calculation. See issue #1722 for details. Thanks to JujoHotaru for raising the issue. -
It will be included in the next release.
-
svd_merge_lora.py
、sdxl_merge_lora.py
、resize_lora.py
で、保存時の精度が計算時の精度と異なる場合、LoRAメタデータのハッシュ値が正しく計算されない不具合を修正しました。詳細は issue #1722 をご覧ください。問題提起していただいた JujoHotaru 氏に感謝します。 -
以上は次回リリースに含まれます。
-
sdxl_merge_lora.py
now supports OFT. Thanks to Maru-mee for the PR #1580. -
svd_merge_lora.py
now supports LBW. Thanks to terracottahaniwa. See PR #1575 for details. -
sdxl_merge_lora.py
also supports LBW. -
See LoRA Block Weight by hako-mikan for details on LBW.
-
These will be included in the next release.
-
sdxl_merge_lora.py
が OFT をサポートされました。PR #1580 Maru-mee 氏に感謝します。 -
svd_merge_lora.py
で LBW がサポートされました。PR #1575 terracottahaniwa 氏に感謝します。 -
sdxl_merge_lora.py
でも LBW がサポートされました。 -
LBW の詳細は hako-mikan 氏の LoRA Block Weight をご覧ください。
-
以上は次回リリースに含まれます。
-
Fixed
cache_latents.py
andcache_text_encoder_outputs.py
not working. (Will be included in the next release.) -
cache_latents.py
およびcache_text_encoder_outputs.py
が動作しなくなっていたのを修正しました。(次回リリースに含まれます。)
-
The default value of
huber_schedule
in Scheduled Huber Loss is changed fromexponential
tosnr
, which is expected to give better results. -
Scheduled Huber Loss の
huber_schedule
のデフォルト値をexponential
から、より良い結果が期待できるsnr
に変更しました。
- The dependent libraries are updated. Please see Upgrade and update the libraries.
- Especially
imagesize
is newly added, so if you cannot update the libraries immediately, please install withpip install imagesize==1.4.1
separately. bitsandbytes==0.43.0
,prodigyopt==1.0
,lion-pytorch==0.0.6
are included in the requirements.txt.bitsandbytes
no longer requires complex procedures as it now officially supports Windows.
- Also, the PyTorch version is updated to 2.1.2 (PyTorch does not need to be updated immediately). In the upgrade procedure, PyTorch is not updated, so please manually install or update torch, torchvision, xformers if necessary (see Upgrade PyTorch).
- Especially
- When logging to wandb is enabled, the entire command line is exposed. Therefore, it is recommended to write wandb API key and HuggingFace token in the configuration file (
.toml
). Thanks to bghira for raising the issue.- A warning is displayed at the start of training if such information is included in the command line.
- Also, if there is an absolute path, the path may be exposed, so it is recommended to specify a relative path or write it in the configuration file. In such cases, an INFO log is displayed.
- See #1123 and PR #1240 for details.
- Colab seems to stop with log output. Try specifying
--console_log_simple
option in the training script to disable rich logging. - Other improvements include the addition of masked loss, scheduled Huber Loss, DeepSpeed support, dataset settings improvements, and image tagging improvements. See below for details.
train_network.py
andsdxl_train_network.py
are modified to record some dataset settings in the metadata of the trained model (caption_prefix
,caption_suffix
,keep_tokens_separator
,secondary_separator
,enable_wildcard
).- Fixed a bug that U-Net and Text Encoders are included in the state in
train_network.py
andsdxl_train_network.py
. The saving and loading of the state are faster, the file size is smaller, and the memory usage when loading is reduced. - DeepSpeed is supported. PR #1101 and #1139 Thanks to BootsofLagrangian! See PR #1101 for details.
- The masked loss is supported in each training script. PR #1207 See Masked loss for details.
- Scheduled Huber Loss has been introduced to each training scripts. PR #1228 Thanks to kabachuha for the PR and cheald, drhead, and others for the discussion! See the PR and Scheduled Huber Loss for details.
- The options
--noise_offset_random_strength
and--ip_noise_gamma_random_strength
are added to each training script. These options can be used to vary the noise offset and ip noise gamma in the range of 0 to the specified value. PR #1177 Thanks to KohakuBlueleaf! - The options
--save_state_on_train_end
are added to each training script. PR #1168 Thanks to gesen2egee! - The options
--sample_every_n_epochs
and--sample_every_n_steps
in each training script now display a warning and ignore them when a number less than or equal to0
is specified. Thanks to S-Del for raising the issue.
- The English version of the dataset settings documentation is added. PR #1175 Thanks to darkstorm2150!
- The
.toml
file for the dataset config is now read in UTF-8 encoding. PR #1167 Thanks to Horizon1704! - Fixed a bug that the last subset settings are applied to all images when multiple subsets of regularization images are specified in the dataset settings. The settings for each subset are correctly applied to each image. PR #1205 Thanks to feffy380!
- Some features are added to the dataset subset settings.
secondary_separator
is added to specify the tag separator that is not the target of shuffling or dropping.- Specify
secondary_separator=";;;"
. When you specifysecondary_separator
, the part is not shuffled or dropped.
- Specify
enable_wildcard
is added. When set totrue
, the wildcard notation{aaa|bbb|ccc}
can be used. The multi-line caption is also enabled.keep_tokens_separator
is updated to be used twice in the caption. When you specifykeep_tokens_separator="|||"
, the part divided by the second|||
is not shuffled or dropped and remains at the end.- The existing features
caption_prefix
andcaption_suffix
can be used together.caption_prefix
andcaption_suffix
are processed first, and thenenable_wildcard
,keep_tokens_separator
, shuffling and dropping, andsecondary_separator
are processed in order. - See Dataset config for details.
- The dataset with DreamBooth method supports caching image information (size, caption). PR #1178 and #1206 Thanks to KohakuBlueleaf! See DreamBooth method specific options for details.
- The support for v3 repositories is added to
tag_image_by_wd14_tagger.py
(--onnx
option only). PR #1192 Thanks to sdbds!- Onnx may need to be updated. Onnx is not installed by default, so please install or update it with
pip install onnx==1.15.0 onnxruntime-gpu==1.17.1
etc. Please also check the comments inrequirements.txt
.
- Onnx may need to be updated. Onnx is not installed by default, so please install or update it with
- The model is now saved in the subdirectory as
--repo_id
intag_image_by_wd14_tagger.py
. This caches multiple repo_id models. Please delete unnecessary files under--model_dir
. - Some options are added to
tag_image_by_wd14_tagger.py
.- Some are added in PR #1216 Thanks to Disty0!
- Output rating tags
--use_rating_tags
and--use_rating_tags_as_last_tag
- Output character tags first
--character_tags_first
- Expand character tags and series
--character_tag_expand
- Specify tags to output first
--always_first_tags
- Replace tags
--tag_replacement
- See Tagging documentation for details.
- Fixed an error when specifying
--beam_search
and a value of 2 or more for--num_beams
inmake_captions.py
.
The masked loss is supported in each training script. To enable the masked loss, specify the --masked_loss
option.
The feature is not fully tested, so there may be bugs. If you find any issues, please open an Issue.
ControlNet dataset is used to specify the mask. The mask images should be the RGB images. The pixel value 255 in R channel is treated as the mask (the loss is calculated only for the pixels with the mask), and 0 is treated as the non-mask. The pixel values 0-255 are converted to 0-1 (i.e., the pixel value 128 is treated as the half weight of the loss). See details for the dataset specification in the LLLite documentation.
Scheduled Huber Loss has been introduced to each training scripts. This is a method to improve robustness against outliers or anomalies (data corruption) in the training data.
With the traditional MSE (L2) loss function, the impact of outliers could be significant, potentially leading to a degradation in the quality of generated images. On the other hand, while the Huber loss function can suppress the influence of outliers, it tends to compromise the reproduction of fine details in images.
To address this, the proposed method employs a clever application of the Huber loss function. By scheduling the use of Huber loss in the early stages of training (when noise is high) and MSE in the later stages, it strikes a balance between outlier robustness and fine detail reproduction.
Experimental results have confirmed that this method achieves higher accuracy on data containing outliers compared to pure Huber loss or MSE. The increase in computational cost is minimal.
The newly added arguments loss_type, huber_schedule, and huber_c allow for the selection of the loss function type (Huber, smooth L1, MSE), scheduling method (exponential, constant, SNR), and Huber's parameter. This enables optimization based on the characteristics of the dataset.
See PR #1228 for details.
loss_type
: Specify the loss function type. Choosehuber
for Huber loss,smooth_l1
for smooth L1 loss, andl2
for MSE loss. The default isl2
, which is the same as before.huber_schedule
: Specify the scheduling method. Chooseexponential
,constant
, orsnr
. The default issnr
.huber_c
: Specify the Huber's parameter. The default is0.1
.
Please read Releases for recent updates.
- 依存ライブラリが更新されました。アップグレード を参照しライブラリを更新してください。
- 特に
imagesize
が新しく追加されていますので、すぐにライブラリの更新ができない場合はpip install imagesize==1.4.1
で個別にインストールしてください。 bitsandbytes==0.43.0
、prodigyopt==1.0
、lion-pytorch==0.0.6
が requirements.txt に含まれるようになりました。bitsandbytes
が公式に Windows をサポートしたため複雑な手順が不要になりました。
- また PyTorch のバージョンを 2.1.2 に更新しました。PyTorch はすぐに更新する必要はありません。更新時は、アップグレードの手順では PyTorch が更新されませんので、torch、torchvision、xformers を手動でインストールしてください。
- 特に
- wandb へのログ出力が有効の場合、コマンドライン全体が公開されます。そのため、コマンドラインに wandb の API キーや HuggingFace のトークンなどが含まれる場合、設定ファイル(
.toml
)への記載をお勧めします。問題提起していただいた bghira 氏に感謝します。 - Colab での動作時、ログ出力で停止してしまうようです。学習スクリプトに
--console_log_simple
オプションを指定し、rich のロギングを無効してお試しください。 - その他、マスクロス追加、Scheduled Huber Loss 追加、DeepSpeed 対応、データセット設定の改善、画像タグ付けの改善などがあります。詳細は以下をご覧ください。
train_network.py
およびsdxl_train_network.py
で、学習したモデルのメタデータに一部のデータセット設定が記録されるよう修正しました(caption_prefix
、caption_suffix
、keep_tokens_separator
、secondary_separator
、enable_wildcard
)。train_network.py
およびsdxl_train_network.py
で、state に U-Net および Text Encoder が含まれる不具合を修正しました。state の保存、読み込みが高速化され、ファイルサイズも小さくなり、また読み込み時のメモリ使用量も削減されます。- DeepSpeed がサポートされました。PR #1101 、#1139 BootsofLagrangian 氏に感謝します。詳細は PR #1101 をご覧ください。
- 各学習スクリプトでマスクロスをサポートしました。PR #1207 詳細は マスクロスについて をご覧ください。
- 各学習スクリプトに Scheduled Huber Loss を追加しました。PR #1228 ご提案いただいた kabachuha 氏、および議論を深めてくださった cheald 氏、drhead 氏を始めとする諸氏に感謝します。詳細は当該 PR および Scheduled Huber Loss について をご覧ください。
- 各学習スクリプトに、noise offset、ip noise gammaを、それぞれ 0~指定した値の範囲で変動させるオプション
--noise_offset_random_strength
および--ip_noise_gamma_random_strength
が追加されました。 PR #1177 KohakuBlueleaf 氏に感謝します。 - 各学習スクリプトに、学習終了時に state を保存する
--save_state_on_train_end
オプションが追加されました。 PR #1168 gesen2egee 氏に感謝します。 - 各学習スクリプトで
--sample_every_n_epochs
および--sample_every_n_steps
オプションに0
以下の数値を指定した時、警告を表示するとともにそれらを無視するよう変更しました。問題提起していただいた S-Del 氏に感謝します。
- データセット設定の
.toml
ファイルが UTF-8 encoding で読み込まれるようになりました。PR #1167 Horizon1704 氏に感謝します。 - データセット設定で、正則化画像のサブセットを複数指定した時、最後のサブセットの各種設定がすべてのサブセットの画像に適用される不具合が修正されました。それぞれのサブセットの設定が、それぞれの画像に正しく適用されます。PR #1205 feffy380 氏に感謝します。
- データセットのサブセット設定にいくつかの機能を追加しました。
- シャッフルの対象とならないタグ分割識別子の指定
secondary_separator
を追加しました。secondary_separator=";;;"
のように指定します。secondary_separator
で区切ることで、その部分はシャッフル、drop 時にまとめて扱われます。 enable_wildcard
を追加しました。true
にするとワイルドカード記法{aaa|bbb|ccc}
が使えます。また複数行キャプションも有効になります。keep_tokens_separator
をキャプション内に 2 つ使えるようにしました。たとえばkeep_tokens_separator="|||"
と指定したとき、1girl, hatsune miku, vocaloid ||| stage, mic ||| best quality, rating: general
とキャプションを指定すると、二番目の|||
で分割された部分はシャッフル、drop されず末尾に残ります。- 既存の機能
caption_prefix
とcaption_suffix
とあわせて使えます。caption_prefix
とcaption_suffix
は一番最初に処理され、その後、ワイルドカード、keep_tokens_separator
、シャッフルおよび drop、secondary_separator
の順に処理されます。 - 詳細は データセット設定 をご覧ください。
- シャッフルの対象とならないタグ分割識別子の指定
- DreamBooth 方式の DataSet で画像情報(サイズ、キャプション)をキャッシュする機能が追加されました。PR #1178、#1206 KohakuBlueleaf 氏に感謝します。詳細は データセット設定 をご覧ください。
- データセット設定の英語版ドキュメント が追加されました。PR #1175 darkstorm2150 氏に感謝します。
tag_image_by_wd14_tagger.py
で v3 のリポジトリがサポートされました(--onnx
指定時のみ有効)。 PR #1192 sdbds 氏に感謝します。- Onnx のバージョンアップが必要になるかもしれません。デフォルトでは Onnx はインストールされていませんので、
pip install onnx==1.15.0 onnxruntime-gpu==1.17.1
等でインストール、アップデートしてください。requirements.txt
のコメントもあわせてご確認ください。
- Onnx のバージョンアップが必要になるかもしれません。デフォルトでは Onnx はインストールされていませんので、
tag_image_by_wd14_tagger.py
で、モデルを--repo_id
のサブディレクトリに保存するようにしました。これにより複数のモデルファイルがキャッシュされます。--model_dir
直下の不要なファイルは削除願います。tag_image_by_wd14_tagger.py
にいくつかのオプションを追加しました。- 一部は PR #1216 で追加されました。Disty0 氏に感謝します。
- レーティングタグを出力する
--use_rating_tags
および--use_rating_tags_as_last_tag
- キャラクタタグを最初に出力する
--character_tags_first
- キャラクタタグとシリーズを展開する
--character_tag_expand
- 常に最初に出力するタグを指定する
--always_first_tags
- タグを置換する
--tag_replacement
- 詳細は タグ付けに関するドキュメント をご覧ください。
make_captions.py
で--beam_search
を指定し--num_beams
に2以上の値を指定した時のエラーを修正しました。
各学習スクリプトでマスクロスをサポートしました。マスクロスを有効にするには --masked_loss
オプションを指定してください。
機能は完全にテストされていないため、不具合があるかもしれません。その場合は Issue を立てていただけると助かります。
マスクの指定には ControlNet データセットを使用します。マスク画像は RGB 画像である必要があります。R チャンネルのピクセル値 255 がロス計算対象、0 がロス計算対象外になります。0-255 の値は、0-1 の範囲に変換されます(つまりピクセル値 128 の部分はロスの重みが半分になります)。データセットの詳細は LLLite ドキュメント をご覧ください。
各学習スクリプトに、学習データ中の異常値や外れ値(data corruption)への耐性を高めるための手法、Scheduled Huber Lossが導入されました。
従来のMSE(L2)損失関数では、異常値の影響を大きく受けてしまい、生成画像の品質低下を招く恐れがありました。一方、Huber損失関数は異常値の影響を抑えられますが、画像の細部再現性が損なわれがちでした。
この手法ではHuber損失関数の適用を工夫し、学習の初期段階(ノイズが大きい場合)ではHuber損失を、後期段階ではMSEを用いるようスケジューリングすることで、異常値耐性と細部再現性のバランスを取ります。
実験の結果では、この手法が純粋なHuber損失やMSEと比べ、異常値を含むデータでより高い精度を達成することが確認されています。また計算コストの増加はわずかです。
具体的には、新たに追加された引数loss_type、huber_schedule、huber_cで、損失関数の種類(Huber, smooth L1, MSE)とスケジューリング方法(exponential, constant, SNR)を選択できます。これによりデータセットに応じた最適化が可能になります。
詳細は PR #1228 をご覧ください。
loss_type
: 損失関数の種類を指定します。huber
で Huber損失、smooth_l1
で smooth L1 損失、l2
で MSE 損失を選択します。デフォルトはl2
で、従来と同様です。huber_schedule
: スケジューリング方法を指定します。exponential
で指数関数的、constant
で一定、snr
で信号対雑音比に基づくスケジューリングを選択します。デフォルトはsnr
です。huber_c
: Huber損失のパラメータを指定します。デフォルトは0.1
です。
PR 内でいくつかの比較が共有されています。この機能を試す場合、最初は --loss_type smooth_l1 --huber_schedule snr --huber_c 0.1
などで試してみるとよいかもしれません。
最近の更新情報は Release をご覧ください。
The LoRA supported by train_network.py
has been named to avoid confusion. The documentation has been updated. The following are the names of LoRA types in this repository.
-
LoRA-LierLa : (LoRA for Li n e a r La yers)
LoRA for Linear layers and Conv2d layers with 1x1 kernel
-
LoRA-C3Lier : (LoRA for C olutional layers with 3 x3 Kernel and Li n e a r layers)
In addition to 1., LoRA for Conv2d layers with 3x3 kernel
LoRA-LierLa is the default LoRA type for train_network.py
(without conv_dim
network arg).
A prompt file might look like this, for example
# prompt 1
masterpiece, best quality, (1girl), in white shirts, upper body, looking at viewer, simple background --n low quality, worst quality, bad anatomy,bad composition, poor, low effort --w 768 --h 768 --d 1 --l 7.5 --s 28
# prompt 2
masterpiece, best quality, 1boy, in business suit, standing at street, looking back --n (low quality, worst quality), bad anatomy,bad composition, poor, low effort --w 576 --h 832 --d 2 --l 5.5 --s 40
Lines beginning with #
are comments. You can specify options for the generated image with options like --n
after the prompt. The following can be used.
--n
Negative prompt up to the next option.--w
Specifies the width of the generated image.--h
Specifies the height of the generated image.--d
Specifies the seed of the generated image.--l
Specifies the CFG scale of the generated image.--s
Specifies the number of steps in the generation.
The prompt weighting such as ( )
and [ ]
are working.