Skip to content

AI-in-Health/PromptLLM

Repository files navigation

System Requirements

Hardware requirements

PromptNet package requires only a standard computer with enough RAM to support the operations defined by a user. For minimal performance, this will be a computer with about 2 GB of RAM. For optimal performance, we recommend a computer with the following specs:

RAM: 16+ GB
CPU: 4+ cores, 3.3+ GHz/core
GPU: 2+ V100

The runtimes below are generated using a computer with the recommended specs.

Software requirements

This package is supported for Linux. The package has been tested on the following system:

Linux: Ubuntu 16.04

Environment

Clone the repo

git clone https://github.com/ai-in-health/PromptNet

Install dependencies

conda create -n PromptNet python==3.9
conda activate PromptNet
# install a proper version of PyTorch
# see https://pytorch.org/get-started/previous-versions/
pip install pytorch>=1.10.1 torchvision>=0.11.2 torchaudio>=0.10.1 pytorch-cuda==11.8 -c pytorch -c nvidia

# install the rest dependencies
pip install -r requirement.txt

which should install in about 5 mins. We can run the code under torch==2.0.1 and torchvision==0.15.2. Other versions may work.

Pre-trained Model

We provide a quick implementation of our method.

First, you should download the pre-trained models and prompts from Google Drive.

Type File Name
Prompts prompt.pth
Few-shot Model (1%) few-shot.pth
Fully-supervised Model (100%) fully-supervised.pth

Then, you can directly run the following command to process your own medical images:

export model_weights=few-shot.pth
or
export model_weights=fully-supervised.pth
python inference.py \
--prompt='./prompt/prompt.pth' \
--load='./ckpt/${model_weights}' \
--image_path='./example_figs/fig1.jpg' 

Data

The root of this repo/
    mimic_cxr
    ├── annotation.json             # MIMIC_CXR dataset
    ├── images
    │   ├── p10               
    │   ├──  .
    │   ├──	 .
    │		└── p19
    finetune
    ├── annotation.json             # Downstream dataset
    ├── images
    │   ├── patient 1               
    │   ├──  .
    │   ├──	 .
    pretrained
    ├── resnet
    │		└── pytorch_model.bin
    │
    decoder_config
    │		└── decoder_config.pkl      # configuration file for model
    │
    model_weights	
    │		└── few-shot.pth
    │		└── fully-supervised.pth
    │
    prompt
    │		└── prompt.pt
    │
    └── ...

The data folder contains the following subfolders:

  • The mimic_cxr folder contains MIMIC-CXR image data and corresponding annotation (eg., image id, report etc...).
  • The finetune folder contains the image data and corresponding annotation (eg., image id, report etc...) of the downstream dataset.
  • The pretrained folder contains the initialized weights for our encoder which will download automatically when you run the code.
  • The decoder_config, model_weights and prompt folders contain the configuration file of the model, its weights, and the support prompt in the inference stage, respectively.

Datasets

We provide the links for quick downloading datasets.

Dataset
COVIDx-CXR-2
COVID-CXR
BIMCV-COVID-19
MIMIC-CXR
NIH ChestX-ray

Training

Here is an example of running command:

export dataset=mimic-cxr
python PromptNet.py \
--image_dir='./${dataset}/images' \
--json_path='./${dataset}/annotation.json' \
--dataset=${dataset} \
--max_seq_length=100 \
--threshold=10 \
--bs=32 

Fine-tuning

Here is an example of running command:

export dataset=downstream_dataset
python PromptNet.py \
--train_mode=fine-tuning \
--image_dir='./${dataset}/images' \
--json_path='./${dataset}/annotation.json' \
--dataset=${dataset} \
--max_seq_length=100 \
--threshold=10 \
--bs=32 \
--prompt='./prompt/prompt.pt' \
--prompt_load=yes \
--random_init=no \
--weight_path='./model_weights/${model_weights}' \

Evaluation

Here is an example of running command:

export dataset=downstream_dataset
python test.py \
--dataset='$dataset' \
--max_seq_length=100 \
--threshold=10 \
--epochs=10 \
--bs=16 \
--load='./your_model_weights' 

You could specify $dataset to load your own corpus. Our method can be tested within 10 mins on a single V100 GPU

Notes

  1. To evaluate report generation, ensure that your system has installed JAVA. Here is an example:
    • Download from the official website (https://www.java.com/en/download/manual.jsp) to obtain, e.g., jdk-8u333-linux-x64.tar.gz
    • Unzip the file by running tar -zxvf jdk-8u333-linux-x64.tar.gz, and you will see the jre folder
    • Write the following lines to ~/.bashrc:
      • echo "export JRE_HOME=path/to/jre" >> ~/.bashrc
      • echo "export PATH=${JRE_HOME}/bin:$PATH" >> ~/.bashrc
    • Activate the settings by running source ~/.bashrc
    • See if the java has been installed: java -version
  2. You should install packages pycocoevalcap and pycocotools (included in requirement.txt).
  3. When calculating the SPICE metric, the code will try to automatically download two files stanford-corenlp-3.6.0.jar and stanford-corenlp-3.6.0-models.jar, and save them to ${pycocoevalcapPath}/spice/lib/. If you encounter a network issue, you can prepare these two files by yourself:
  4. To evaluate report generation, you should install the stanfordcorenlp package (included in requirement.txt), and download stanford-corenlp-4.5.2. The following is an example. Note that we set corenlp_root = data/stanford-corenlp-4.5.2 in configs/__init__.py.
wget https://nlp.stanford.edu/software/stanford-corenlp-4.5.2.zip --no-check-certificate
wget https://nlp.stanford.edu/software/stanford-corenlp-4.5.2-models-german.jar --no-check-certificate
wget https://nlp.stanford.edu/software/stanford-corenlp-4.5.2-models-french.jar --no-check-certificate

unzip stanford-corenlp-4.5.2.zip -d data/
mv stanford-corenlp-4.5.2-models-german.jar data/stanford-corenlp-4.5.2/
mv stanford-corenlp-4.5.2-models-french.jar data/stanford-corenlp-4.5.2/
rm stanford-corenlp-4.5.2.zip

Bugs or Questions?

If you encounter any problems when using the code, or want to report a bug, you can open an issue or email [email protected] and [email protected]. Please try to specify the problem with details so we can help you better and quicker!

Releases

No releases published

Packages

No packages published

Languages