-
Notifications
You must be signed in to change notification settings - Fork 476
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7728411
commit e68fbe2
Showing
4 changed files
with
584 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
# Copyright (c) Tencent Inc. All rights reserved. | ||
import os | ||
import sys | ||
import argparse | ||
import os.path as osp | ||
from io import BytesIO | ||
from functools import partial | ||
|
||
import cv2 | ||
# import onnx | ||
import torch | ||
# import onnxsim | ||
import numpy as np | ||
import gradio as gr | ||
from PIL import Image | ||
import supervision as sv | ||
from torchvision.ops import nms | ||
from mmengine.runner import Runner | ||
from mmengine.dataset import Compose | ||
from mmengine.runner.amp import autocast | ||
from mmengine.config import Config, DictAction, ConfigDict | ||
from mmdet.datasets import CocoDataset | ||
from mmyolo.registry import RUNNERS | ||
|
||
from transformers import (AutoTokenizer, CLIPTextModelWithProjection) | ||
from transformers import (AutoProcessor, CLIPVisionModelWithProjection) | ||
|
||
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=2) | ||
MASK_ANNOTATOR = sv.MaskAnnotator() | ||
|
||
|
||
class LabelAnnotator(sv.LabelAnnotator): | ||
|
||
@staticmethod | ||
def resolve_text_background_xyxy( | ||
center_coordinates, | ||
text_wh, | ||
position, | ||
): | ||
center_x, center_y = center_coordinates | ||
text_w, text_h = text_wh | ||
return center_x, center_y, center_x + text_w, center_y + text_h | ||
|
||
|
||
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4, | ||
text_scale=0.5, | ||
text_thickness=1) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description='YOLO-World Demo') | ||
parser.add_argument('config', help='test config file path') | ||
parser.add_argument('checkpoint', help='checkpoint file') | ||
parser.add_argument( | ||
'--work-dir', | ||
help='the directory to save the file containing evaluation metrics', | ||
default='output') | ||
parser.add_argument( | ||
'--cfg-options', | ||
nargs='+', | ||
action=DictAction, | ||
help='override some settings in the used config, the key-value pair ' | ||
'in xxx=yyy format will be merged into config file. If the value to ' | ||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | ||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | ||
'Note that the quotation marks are necessary and that no white space ' | ||
'is allowed.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def generate_image_embeddings(prompt_image, | ||
vision_encoder, | ||
vision_processor, | ||
projector, | ||
device='cuda:0'): | ||
prompt_image = prompt_image.convert('RGB') | ||
inputs = vision_processor(images=[prompt_image], | ||
return_tensors="pt", | ||
padding=True) | ||
inputs = inputs.to(device) | ||
image_outputs = vision_encoder(**inputs) | ||
img_feats = image_outputs.image_embeds.view(1, -1) | ||
img_feats = img_feats / img_feats.norm(p=2, dim=-1, keepdim=True) | ||
if projector is not None: | ||
img_feats = projector(img_feats) | ||
return img_feats | ||
|
||
|
||
def run_image(runner, | ||
vision_encoder, | ||
vision_processor, | ||
padding_token, | ||
image, | ||
text, | ||
prompt_image, | ||
add_padding, | ||
max_num_boxes, | ||
score_thr, | ||
nms_thr, | ||
image_path='./work_dirs/demo.png'): | ||
image = image.convert('RGB') | ||
if prompt_image is not None: | ||
texts = [['object'], [' ']] | ||
projector = None | ||
if hasattr(runner.model, 'image_prompt_encoder'): | ||
projector = runner.model.image_prompt_encoder.projector | ||
prompt_embeddings = generate_image_embeddings( | ||
prompt_image, | ||
vision_encoder=vision_encoder, | ||
vision_processor=vision_processor, | ||
projector=projector) | ||
if add_padding == 'padding': | ||
prompt_embeddings = torch.cat([prompt_embeddings, padding_token], | ||
dim=0) | ||
prompt_embeddings = prompt_embeddings / prompt_embeddings.norm( | ||
p=2, dim=-1, keepdim=True) | ||
runner.model.num_test_classes = prompt_embeddings.shape[0] | ||
runner.model.setembeddings(prompt_embeddings[None]) | ||
else: | ||
runner.model.setembeddings(None) | ||
texts = [[t.strip()] for t in text.split(',')] | ||
data_info = dict(img_id=0, img=np.array(image), texts=texts) | ||
data_info = runner.pipeline(data_info) | ||
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0), | ||
data_samples=[data_info['data_samples']]) | ||
|
||
with autocast(enabled=False), torch.no_grad(): | ||
if (prompt_image is not None) and ('texts' in data_batch['data_samples'][ | ||
0]): | ||
del data_batch['data_samples'][0]['texts'] | ||
output = runner.model.test_step(data_batch)[0] | ||
pred_instances = output.pred_instances | ||
|
||
keep = nms(pred_instances.bboxes, | ||
pred_instances.scores, | ||
iou_threshold=nms_thr) | ||
pred_instances = pred_instances[keep] | ||
pred_instances = pred_instances[pred_instances.scores.float() > score_thr] | ||
|
||
if len(pred_instances.scores) > max_num_boxes: | ||
indices = pred_instances.scores.float().topk(max_num_boxes)[1] | ||
pred_instances = pred_instances[indices] | ||
|
||
pred_instances = pred_instances.cpu().numpy() | ||
if 'masks' in pred_instances: | ||
masks = pred_instances['masks'] | ||
else: | ||
masks = None | ||
detections = sv.Detections(xyxy=pred_instances['bboxes'], | ||
class_id=pred_instances['labels'], | ||
confidence=pred_instances['scores'], | ||
mask=masks) | ||
labels = [ | ||
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in | ||
zip(detections.class_id, detections.confidence) | ||
] | ||
|
||
image = np.array(image) | ||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR | ||
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections) | ||
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels) | ||
if masks is not None: | ||
image = MASK_ANNOTATOR.annotate(image, detections) | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB | ||
image = Image.fromarray(image) | ||
return image | ||
|
||
|
||
def demo(runner, args, vision_encoder, vision_processor, padding_embed): | ||
with gr.Blocks(title="YOLO-World") as demo: | ||
with gr.Row(): | ||
gr.Markdown('<h1><center>YOLO-World: Real-Time Open-Vocabulary ' | ||
'Object Detector</center></h1>') | ||
with gr.Row(): | ||
image = gr.Image(type='pil', label='input image') | ||
output_image = gr.Image(type='pil', label='output image') | ||
with gr.Row(): | ||
with gr.Column(scale=0.3): | ||
with gr.Row(): | ||
prompt_image = gr.Image(type='pil', | ||
label='Image Prompts', | ||
height=300) | ||
with gr.Row(): | ||
add_padding = gr.Radio(["padding", "none"], | ||
label="Padding Prompt", | ||
info="whether add padding prompt") | ||
with gr.Column(scale=0.3): | ||
with gr.Row(): | ||
input_text = gr.Textbox( | ||
lines=7, | ||
label='Text Prompts:\nEnter the classes to be detected, ' | ||
'separated by comma', | ||
value=', '.join(CocoDataset.METAINFO['classes']), | ||
elem_id='textbox') | ||
with gr.Column(scale=0.4): | ||
max_num_boxes = gr.Slider(minimum=1, | ||
maximum=300, | ||
value=100, | ||
step=1, | ||
interactive=True, | ||
label='Maximum Number Boxes') | ||
score_thr = gr.Slider(minimum=0, | ||
maximum=1, | ||
value=0.05, | ||
step=0.001, | ||
interactive=True, | ||
label='Score Threshold') | ||
nms_thr = gr.Slider(minimum=0, | ||
maximum=1, | ||
value=0.7, | ||
step=0.001, | ||
interactive=True, | ||
label='NMS Threshold') | ||
|
||
with gr.Row(): | ||
submit = gr.Button('Submit') | ||
clear = gr.Button('Clear') | ||
|
||
exp_image_dir = "./gradio_examples/image_prompts/images/" | ||
exp_prompt_dir = "./gradio_examples/image_prompts/prompts/" | ||
example = gr.Examples( | ||
examples=[ | ||
[ | ||
exp_image_dir + "0.jpeg", exp_prompt_dir + "0.png", "", | ||
"none", 0.3, 0.5, 100 | ||
], | ||
[ | ||
exp_image_dir + "1.png", exp_prompt_dir + "1.png", "", | ||
"padding", 0.2, 0.1, 100 | ||
], | ||
[ | ||
exp_image_dir + "2.png", exp_prompt_dir + "2.png", "", | ||
"padding", 0.0, 0.1, 200 | ||
], | ||
[ | ||
exp_image_dir + "3.png", exp_prompt_dir + "3.png", "", | ||
"padding", 0.3, 0.5, 100 | ||
], | ||
[ | ||
exp_image_dir + "4.png", exp_prompt_dir + "4.png", "", | ||
"padding", 0.01, 0.1, 200 | ||
], | ||
[ | ||
exp_image_dir + "5.png", exp_prompt_dir + "5.png", "", | ||
"none", 0.3, 0.5, 100 | ||
], | ||
], | ||
inputs=[ | ||
image, prompt_image, input_text, add_padding, score_thr, | ||
nms_thr, max_num_boxes | ||
], | ||
) | ||
|
||
submit.click( | ||
partial(run_image, runner, vision_encoder, vision_processor, | ||
padding_embed), [ | ||
image, | ||
input_text, | ||
prompt_image, | ||
add_padding, | ||
max_num_boxes, | ||
score_thr, | ||
nms_thr, | ||
], [output_image]) | ||
clear.click(lambda: [None, None, '', None], None, | ||
[image, prompt_image, input_text, output_image]) | ||
|
||
demo.launch(server_name='0.0.0.0', | ||
server_port=38721) # port 80 does not work for me | ||
|
||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
|
||
# load config | ||
cfg = Config.fromfile(args.config) | ||
if args.cfg_options is not None: | ||
cfg.merge_from_dict(args.cfg_options) | ||
|
||
if args.work_dir is not None: | ||
cfg.work_dir = args.work_dir | ||
elif cfg.get('work_dir', None) is None: | ||
cfg.work_dir = osp.join('./work_dirs', | ||
osp.splitext(osp.basename(args.config))[0]) | ||
|
||
cfg.load_from = args.checkpoint | ||
|
||
if 'runner_type' not in cfg: | ||
runner = Runner.from_cfg(cfg) | ||
else: | ||
runner = RUNNERS.build(cfg) | ||
|
||
runner.call_hook('before_run') | ||
runner.load_or_resume() | ||
pipeline = cfg.test_dataloader.dataset.pipeline | ||
pipeline[0].type = 'mmdet.LoadImageFromNDArray' | ||
runner.pipeline = Compose(pipeline) | ||
runner.model.eval() | ||
|
||
# init vision encoder | ||
clip_model = "/group/40034/adriancheng/pretrained_models/open-ai-clip-vit-base-patch32" | ||
vision_model = CLIPVisionModelWithProjection.from_pretrained(clip_model) | ||
processor = AutoProcessor.from_pretrained(clip_model) | ||
device = 'cuda:0' | ||
vision_model.to(device) | ||
|
||
texts = [' '] | ||
tokenizer = AutoTokenizer.from_pretrained(clip_model) | ||
text_model = CLIPTextModelWithProjection.from_pretrained(clip_model) | ||
# device = 'cuda:0' | ||
text_model.to(device) | ||
texts = tokenizer(text=texts, return_tensors='pt', padding=True) | ||
texts = texts.to(device) | ||
text_outputs = text_model(**texts) | ||
txt_feats = text_outputs.text_embeds | ||
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True) | ||
txt_feats = txt_feats.reshape(-1, txt_feats.shape[-1]) | ||
txt_feats = txt_feats[0].unsqueeze(0) | ||
demo(runner, args, vision_model, processor, txt_feats) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
# Copyright (c) Tencent Inc. All rights reserved. | ||
from .yolo_world import YOLOWorldDetector, SimpleYOLOWorldDetector | ||
from .yolo_world_image import YOLOWorldImageDetector | ||
|
||
__all__ = ['YOLOWorldDetector', 'SimpleYOLOWorldDetector'] | ||
__all__ = ['YOLOWorldDetector', 'SimpleYOLOWorldDetector', 'YOLOWorldImageDetector'] |
Oops, something went wrong.