Skip to content

AXNing/KSID

Repository files navigation

KAN See In the Dark [paper]

Get Started

Dependencies and Installation

  • Python 3.8
  • Pytorch 1.11
  1. Create Conda Environment
conda create --name KSID python=3.8
conda activate KSID
  1. Install PyTorch
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
  1. Clone Repo
git clone https://github.com/AXNing/KSID.git
  1. Install Dependencies
cd KSID
pip install -r requirements.txt

Data Preparation

Download the raw training and evaluation datasets

[Google Drive]

├── dataset
    ├── LOLv1
        ├── our485
            ├──low
            ├──high
	├── eval15
            ├──low
            ├──high
├── dataset
   ├── LOLv2
       ├── Real_captured
           ├── Train
           ├── Test

Testing

  1. Our pre-trained weights can be downloaded by clicking here, and put it in the following folder:
├── checkpoints
    ├── lolv1_gen.pth
    ├── lolv2_real_gen.pth
    ├── lsrw_gen.pth
  1. Modifying the pre-trained weight path in the json file.
    "path": {
        "log": "logs",
        "tb_logger": "tb_logger",
        "results": "results",
        "checkpoint": "checkpoint", 
        "resume_state": ""
    },
# LOLv1
python test.py --dataset ./config/lolv1.yml --config ./config/lolv1_test.json

# LOLv2-real
python test.py --dataset ./config/lolv2_real.yml --config ./config/lolv2_real_test.json
  1. Evaluation metrics are referenced here.

Training

train uncertainty model

python train.py -uncertainty --config config/llie_train_u.json --dataset config/lolv1.yml

train the second stage

Modifying the uncertainty model weight path in the json file.

    "path": {
        "log": "logs",
        "tb_logger": "tb_logger",
        "results": "results",
        "checkpoint": "checkpoint", 
        "resume_state": ""
    },

python train.py --config config/lolv1_train.json --dataset config/lolv1.yml

To Do List

  • Release the testing code for KSID.
  • Upload the pretrained checkpoints.
  • Release the training code for KSID.

Acknowledgement

Our code is built upon GSAD. Thanks to the contributors for their great work.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published