KAN See In the Dark [paper]
- Python 3.8
- Pytorch 1.11
- Create Conda Environment
conda create --name KSID python=3.8
conda activate KSID
- Install PyTorch
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
- Clone Repo
git clone https://github.com/AXNing/KSID.git
- Install Dependencies
cd KSID
pip install -r requirements.txt
├── dataset
├── LOLv1
├── our485
├──low
├──high
├── eval15
├──low
├──high
├── dataset
├── LOLv2
├── Real_captured
├── Train
├── Test
- Our pre-trained weights can be downloaded by clicking here, and put it in the following folder:
├── checkpoints
├── lolv1_gen.pth
├── lolv2_real_gen.pth
├── lsrw_gen.pth
- Modifying the pre-trained weight path in the json file.
"path": {
"log": "logs",
"tb_logger": "tb_logger",
"results": "results",
"checkpoint": "checkpoint",
"resume_state": ""
},
# LOLv1
python test.py --dataset ./config/lolv1.yml --config ./config/lolv1_test.json
# LOLv2-real
python test.py --dataset ./config/lolv2_real.yml --config ./config/lolv2_real_test.json
- Evaluation metrics are referenced here.
python train.py -uncertainty --config config/llie_train_u.json --dataset config/lolv1.yml
Modifying the uncertainty model weight path in the json file.
"path": {
"log": "logs",
"tb_logger": "tb_logger",
"results": "results",
"checkpoint": "checkpoint",
"resume_state": ""
},
python train.py --config config/lolv1_train.json --dataset config/lolv1.yml
- Release the testing code for KSID.
- Upload the pretrained checkpoints.
- Release the training code for KSID.
Our code is built upon GSAD. Thanks to the contributors for their great work.