forked from aldebaro/dsp-audio
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request aldebaro#5 from AiltonOliveir/main
WahWah
- Loading branch information
Showing
1 changed file
with
73 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,12 +1,78 @@ | ||
''' | ||
Demonstrates specific audio effect using digital signal | ||
processing (DSP). | ||
This effect is called XXX | ||
References: | ||
Author: | ||
Date: | ||
This effect is called Wah Wah | ||
References: https://ses.library.usyd.edu.au/bitstream/handle/2123/10578/Marion%2C%20Bruno%20-%20Wah%20Wah.pdf | ||
Author: Ailton Oliveira | ||
Date: 27/03/2022 | ||
''' | ||
import scipy.io.wavfile as wav | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn.preprocessing import normalize | ||
|
||
def wahwah(signal,fs,dp_factor=0.05,width=2000,min_cutoff=250,max_cutoff=2000): | ||
#Function to return a Wah Wah effect on a signal | ||
#signal - Input signal that will be modulated (Array); | ||
#fs - Sampling frequency (Float - Hertz) | ||
#dp_factor - Damping factor (Float) - dp_factor < 0.5 | ||
#width - effect width (float) | ||
#min_cutoff - Lower cut-off frequency (Float - Hertz) | ||
#max_cutoff - Upper cut-off frequency (Float - Hertz) | ||
|
||
center_freq = width/fs | ||
cutoff_freq=list(np.arange(min_cutoff,max_cutoff,center_freq)) | ||
while(len(cutoff_freq) < len(signal)): | ||
#Add noises until the effect have the same (or bigger) signal size | ||
cutoff_freq.extend(np.arange(max_cutoff,min_cutoff,-center_freq)) #Descending | ||
cutoff_freq.extend(np.arange(min_cutoff,max_cutoff,center_freq)) #Ascending | ||
cutoff_freq = cutoff_freq[0:len(signal)] #Match the signal size | ||
cutoff_freq = np.array(cutoff_freq)#Convert list to array | ||
|
||
#Filtering coefficients | ||
F1 = 2*np.sin((np.pi*cutoff_freq[0])/fs) | ||
Q1 = 2*dp_factor | ||
|
||
highpass=np.zeros(len(signal)) | ||
bandpass=np.zeros(len(signal)) | ||
lowpass=np.zeros(len(signal)) | ||
|
||
#WahWah differential equations | ||
for n in range(0,len(signal)): | ||
highpass[n] = signal[n] - lowpass[n-1] - Q1*bandpass[n-1] | ||
bandpass[n] = F1*highpass[n] + bandpass[n-1] | ||
lowpass[n] = F1*bandpass[n] + lowpass[n-1] | ||
F1 = 2*np.sin((np.pi*cutoff_freq[n])/fs) | ||
|
||
#Normalized Audio | ||
Wahsignal = bandpass/np.amax(abs(bandpass)) | ||
return Wahsignal | ||
|
||
if __name__ == '__main__': | ||
##Isolated test## | ||
|
||
tst_file = '../test_wav_files/sample-16bits.wav' | ||
fs,signal=wav.read(tst_file) | ||
normed = wahwah(signal,fs) | ||
wav.write("wah_wah_example.wav", fs, normed) | ||
plot_signal= normalize(signal.reshape(-1, 1), norm='max',axis=0) | ||
_ =input('Want plot the signals ? (y/n)') | ||
if _ in ['yes','y','sim',True]: | ||
#Plots | ||
t1 = np.arange(0,(len(signal)/fs),1/fs) | ||
plt.plot(t1,plot_signal,label='original') | ||
plt.title('Original Audio') | ||
plt.ylabel('Amplitude') | ||
plt.xlabel('Length (in seconds)') | ||
|
||
plt.plot(t1,normed.reshape(-1, 1),label='wah wah') | ||
plt.title('Wah Wahed Audio') | ||
plt.ylabel('Amplitude') | ||
plt.xlabel('Length (in seconds)') | ||
plt.legend() | ||
plt.show() | ||
else: | ||
print('Finish test') | ||
|
||
|
||
|
||
def wahwah(): | ||
#TO-DO | ||
return None |