2022.11.06
- 新增HorNet, EfficientFormer, SwinTransformer V2, MViT模型
2022.09.13
- 新增可视化数据增强pipeline功能,详见Pipeline visualization
- 很有必要预览整个数据集的数据增强结果,如果遮挡/变形失真的图片比例
占据较多
,很有可能导致准确率下降,因为其主导了训练loss走向!
2022.09.09
- 新增计算模型参数量Parameters与浮点运算量Flops功能,详见Calculate Flops
- Pytorch 1.7.1+
- Python 3.6+
数据集 | 视频教程 | 人工智能技术探讨群 |
---|---|---|
花卉数据集 提取码:0zat |
点我跳转 | 1群:78174903 3群:584723646 |
- 遵循环境搭建完成配置
- 下载MobileNetV3-Small权重至datas下
- Awesome-Backbones文件夹下终端输入
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt
- LeNet5
- AlexNet
- VGG
- DenseNet
- ResNet
- Wide-ResNet
- ResNeXt
- SEResNet
- SEResNeXt
- RegNet
- MobileNetV2
- MobileNetV3
- ShuffleNetV1
- ShuffleNetV2
- EfficientNet
- RepVGG
- Res2Net
- ConvNeXt
- HRNet
- ConvMixer
- CSPNet
- Swin-Transformer
- Vision-Transformer
- Transformer-in-Transformer
- MLP-Mixer
- DeiT
- Conformer
- T2T-ViT
- Twins
- PoolFormer
- VAN
- HorNet
- EfficientFormer
- Swin Transformer V2
- MViT V2
@repo{2020mmclassification,
title={OpenMMLab's Image Classification Toolbox and Benchmark},
author={MMClassification Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmclassification}},
year={2020}
}