Skip to content

AntonBazdyrev/iasa_nlp_course

 
 

Repository files navigation

IASA NLP Course

Setup Working Environment

Pre-requirements

Setup environment

Poetry (Recommended)

  1. Install Poetry using Poetry full guide.
    • Important: Check if it is working using poetry --version
  2. Run command to keep your .venv folder right in your project: poetry config virtualenvs.in-project true
  3. poetry shell
    • Important: If you have conda and 2 environments were activated: conda deactivate
  4. poetry install --no-root

In order to activate environment on the next use. Important: you should be inside your project

poetry shell

Conda

If you have CUDA

conda env create -f environment_gpu.yaml

Otherwise

conda env create -f environment.yaml

In order to activate environment

conda activate iasa_nlp_env

Start Jupyter

You may use any port

jupyter lab --port 7766

Content

  1. Структура та структурні елементи постановки ML задачі. Формалізація бізнес задач. Основні задачі й методи в сфері Обробки природних мов
  2. Представлення природніх мов в машинному вигляді. Класичні та нейронні алгоритми векторизації. Класичні ML підходи в NLP
  3. Основні метрики в NLP (обробка природніх мов). Побудова оцінки підходів і моделей в NLP - валідація
  4. Підходи з використанням архітектур RNN/GRU/LSTM
  5. Підходи з використанням архітектури Transformer
  6. Генеративні задачі: машинний переклад, сумаризація тексту, умовна та безумовна текстова генерація, розгляд GPT архітектури
  7. Задача кластеризації. Задача моделювання тем
  8. MLOps - розгортання моделей

Use Kaggle or Colab for computations

Kaggle

  1. Create Kaggle account
  2. Create Notebook
  3. Explore docs and find out how
    • Add Kaggle dataset to notebook
    • Turn on GPU

Colab

  1. Create Notebook in Colab
  2. Enable GPU
  3. Add Kaggle dataset to Colab - https://www.geeksforgeeks.org/how-to-import-kaggle-datasets-directly-into-google-colab/

Data

  • For most of lectures you will need datasets from Kaggle. Prepare in advance
    • CommonLit - Evaluate Student Summaries dataset API command: kaggle competitions download -c commonlit-evaluate-student-summaries
    • Natural Language Processing with Disaster Tweets dataset API command: kaggle competitions download -c nlp-getting-started
    • Mantis Analytics Location Detection dataset: kaggle datasets download -d vladimirsydor/mantis-analytics-location-detection
    • Dataset for Topic Modelling: https://drive.google.com/drive/folders/1jwh225T0DIEN4A1wMZ8-dVJX-2Tsovqf?usp=sharing
  • We recommend to create data folder in the course root directory and put all datasets there. So you might have next structure
data/
    nlp_getting_started/
        train.csv
        test.csv
        ...
    ...
Lecture_1/
...

How to use Kaggle datasets

  1. Create Kaggle account
  2. Proceed with Installation & Authentication
  3. Don't forget to join a competition and accept its rules on a Kaggle website.
  4. Download dataset with API command

Feedback [Only For Lectors]

2023

Raw table : https://docs.google.com/spreadsheets/d/1P38uhwkMQo0cd1avywbnVJ-dwxiswHpAcIpEHrlv1PY/edit?usp=sharing

TODO

  • Process recordings and upload them to YouTube
  • Process 2023 Feedback

Citation

@misc{iasa_nlp_course_2023,
  author = {Sydorskyi Volodymyr, Bazdyrev Anton, Yelisieiev Vladyslav},
  title = {IASA NLP course 2023},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/VSydorskyy/iasa_nlp_course}},
}

About

Codebase for IASA NLP Course

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%