Metrics calculated using Diarization Metric in One repository
Support DER
, JER
, CDER
, SER
and BER
Run Docker image in order to test with existing audio file from Voxconverse
docker pull avigyan/pyannote
docker run avigyan/pyannote
In order to test using custom wav files perform the following:
1.Clone repository
2.Add wav file and rttm in app folder
3.change wav file name in inference.py
4.change reference rttm name in main.py
5.Build new image or RUN
'''docker build -t pyannote:tagname'''
'''docker run pyannote:tagname'''
1.Clone repository
2.Add wav file and rttm in app folder
3.change wav file name in inference.py
4.change reference rttm name in main.py
5.Move to app directory and install requirements.txt using ''pip install -r requirements.txt'''
5.run python main.py
Results:
collar MS FA SC OVL DER JER CDER SER BER ref_part fa_dur fa_seg fa_mean
-------- ---- ---- ---- ----- ----- ----- ------ ----- ----- ---------- -------- -------- ---------
(value) (val) (val) (val) (val) (val) (value) (value) (val) (value) (value) (value) (value) (value)
collar
,MS
,FA
,SC
,OVL
,DER
,JER
is from the modified dscore URL, original is URL.OVL
means errors occurring in overlapped speeches.CDER
is from URLSER
,BER
,ref_part
,fa_dur
,fa_seg
,fa_mean
is from URL- pyannote-audio is from URL
Results:
collar MS FA SC OVL DER JER CDER SER BER ref_part fa_dur fa_seg fa_mean
-------- ---- ---- ---- ----- ----- ----- ------ ----- ----- ---------- -------- -------- ---------
0.00 0.14 0.00 0.07 0.15 0.21 0.34 0.28 0.37 0.37 0.37 0.00 0.00 0.00