forked from typoverflow/note
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Derek Gao
authored and
Derek Gao
committed
Nov 27, 2019
1 parent
94e3f8e
commit 65834f4
Showing
9 changed files
with
111 additions
and
55 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
# 单源最短路径问题(SSSP) | ||
+ 任意单位权重图 | ||
+ 任意正权重图 | ||
+ 任意无负环的有向图 | ||
+ 任意有向无环图 | ||
|
||
## 最短路径问题 | ||
+ TODO(补充问题表示) | ||
+ 最短路径?权重最小的路径? | ||
+ 无向图?有向图($w(u, v)\not =w(v, u)$)? | ||
+ $w(u, v)<0$? | ||
+ 如果存在负边,那么负环不能存在。否则不存在最短路径 | ||
|
||
## 单源最短路径问题 | ||
+ **【SSSP Problem】:Given a graph $G=(V, E)$ and a weight function $w$, given a source node $s$, find a shortest path from $s$ to every node $u\in V$** | ||
|
||
### SSSP in unit weight graphs | ||
+ $w\equiv 1$ | ||
+ 直接使用BFS即可 | ||
|
||
### SSSP in positive weight graphs | ||
+ 模仿BFS的思路,使用以下算法 | ||
+ 为每个节点维护一个变量$T_u$ | ||
+ 对于源节点s,$T_s=0$ | ||
+ 如果节点u被访问到,那么对于每一条边$(u, v)$,更新$T_v=\min\{T_v, T_u+w(u, v)\}$ | ||
+ 每次取出$T_u$最小的节点进行访问,使用最小堆实现即可 | ||
+ 遍历结束后,每个节点的$T_u$即为该节点到源节点的最短路径长度 | ||
|
||
#### Dijkstra's Algorithm | ||
```python | ||
DijlstraSSSP(G, s): | ||
for (each u in V) | ||
u.dist=INF, u.parent=NIL | ||
s.dist=0 | ||
Build priority queue Q based in dist | ||
while (!Q.empty()) | ||
u = Q.ExtractMin() | ||
for (each edge (u, v) in E) | ||
if (v.dist > u.dist+w(u, v)) | ||
v.dist = u.dist + w(u, v) | ||
v.parent = u | ||
Q.DecreaseKey(u) | ||
``` | ||
+ 不难分析,使用小顶堆实现的Dijkstra算法的总的时间复杂度为$O(n+m)\log n$ | ||
+ Dijlstra算法也是贪心算法 | ||
|
||
#### Dijkstra算法的另一种理解 | ||
TODO() | ||
|
||
### SSSP in directed graphs with negative weights | ||
+ Dijkstra算法对存在负边的图是不正确的 | ||
TODO(补充不正确的说明图示) | ||
+ 但是 | ||
#### | ||
+ When processing edge $(u, v)$, execute procedure Update(u, v): v.dist=$\min\{v.dist, u.dist+w(u, v)\}$ | ||
+ 这维护了两条重要性质 | ||
+ 对于任何一个节点v,v.dist要么是准确的,要么是被过高估计了 | ||
+ 如果u是从源节点s到v最短路径上的最后一个节点,那么当我们调用Update(u, v)后,v.dist变为正确的估计 | ||
+ 以上两条性质导出,Update(u, v)是正确并且有帮助性的 | ||
+ 【safe】:无论Update的操作顺序是怎样的,v.dist要么是被过高估计,要么是正确的 | ||
+ 【helpful】:With correct sequence of Update, we get correct v.dist | ||
+ 观察到两点: | ||
![](img/2019-11-28-02-31-03.png) | ||
|
||
#### Bellman-Ford Algorithm | ||
+ Update all edges | ||
+ Repeat above step for n-1 times | ||
```python | ||
BellmanFordSSSP(G, s): | ||
for each u in V | ||
u.dist = INF, u.parent = NIL | ||
s.dist = 0 | ||
repeat n-1 times: | ||
for each edge (u, v) in E: | ||
if v.dist>u,dist+w(u, v) | ||
v.dist = u.dist+w(u, v) | ||
v.parent = u | ||
|
||
for each edge (u, v) in E # 判断是否存在负环 | ||
if v.dist > u.dist+w(u, v) | ||
return "Negative Cycle!" | ||
``` | ||
![](img/2019-11-28-02-54-47.png) | ||
+ 在预知最短路径深度d的情况下,可以只进行d次repeat。 | ||
+ **Bellman-Ford还可以判断当前图中是否有负环。**循环进行了n-1次后,如果对于某个节点仍然有v.dist>u.dist+w(u, v),那么图中一定存在负环。 | ||
|
||
### SSSP in DAG with negative weights | ||
+ Bellman-Ford算法的核心思想:在每一个包含某条最短路径的边序列上进行Update | ||
+ **【Observation】:在有向无环图中,每一条路径(也就是每一条最短路径),都是拓扑排序的子序列。因此先进行拓扑排序,然后使用拓扑顺序一次更新每个节点即可。** | ||
|
||
#### 算法分析 | ||
```python | ||
DAGSSSP(G, s): | ||
for each u in V | ||
u.dist = INF, u.parent = NIL | ||
s.dist = 0 | ||
Run DFS to obtain topological order | ||
for each node u in topological order | ||
for each edge (u, v) in E | ||
if v.dist > u.dist+w(u, v) | ||
v.dist = u.dist + w(u, v) | ||
v.parent = u | ||
``` | ||
![](img/2019-11-28-02-54-22.png) | ||
+ 时间复杂度为$O(n+m)$ | ||
|
||
#### SSSP in DAG应用:Computing Critical Path | ||
+ 假设需要完成一个包含多个步骤的任务,每一步骤都需要消耗一定时间 | ||
+ 对于某些步骤,它们只能在之前的任务都结束后才能开始 | ||
![](img/2019-11-28-03-01-03.png) |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# All-Pairs Shortest Paths Problem |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.