Emulator of the boost factor for the dark matter power spectrum in nDGP gravity models
It is recommended to install the package in a dedicated python3 environment. The package requires:
- numpy,
- joblib,
- scipy,
- scikit-learn.
To install the package, access the package directory from a terminal window and execute:
pip install .
The emulator model can be imported in python with
from nDGPemu import BoostPredictor
Instantiating a BoostPredictor object loads the MLP model and the auxiliary data
model = BoostPredictor()
The model can be used to predict the boost factor with the syntax
Bk = model.predict(H0rc, z, cosmo_params)
where H0rc, z, cosmo_params are user defined paramters.
The emulator assumes a flat
-
$\Omega_{\rm m} \in [0.28,0.36]$ , -
$\Omega_{\rm b} \in [0.04,0.06]$ , -
$n_{\rm s} \in [0.92,1]$ , -
$A_{\rm s} \in [1.7e-9,2.5e-9]$ , -
$h \in [0.61,0.73]$ .
Notice that the parameter
-
$H_0 r_c \in [0.2,20]$ . -
$z \in [0,2]$ ,
A minimal working example for the emulator is shown in the example notebook.