The code of Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos Rongqin Liang, Yuanman Li, Jiantao Zhou, and Xia Li
Our TTHF framwork:
- Python 3.8
- pytorch 2.0.1
- cuda 11.3
- Ubuntu 20.04
- RTX 3090
- Please refer to the "requirements.txt" file for more details.
First, prepare the data for training or testing by:
cd TTHF/datasets
python ./extract_samples.sh
Note that you need to modify the corresponding path.
Users can train the TTHF models on DoTA dataset easily by runing the following command:
cd TTHF
python3 ./main.py \
--train \
--lr_clip 5e-6 \
--wd 1e-4 \
--epochs 15 \
--batch_size 128 \
--dataset DoTA \
--gpu_num 0 \
--height 224 \
--width 224 \
--normal_class 1 \
--eval_every 1000 \
--base_model 'RN50' \
--general \
--fg \
--hf \
--aafm \
--other_method 'TDAFF_BASE' \
--exp_name 'TDAFF_BASE_RN50'
Note that you need to modify the corresponding path.
Users can test the TTHF models (Extraction code: rb9k) on DoTA or DADA-2000 dataset easily by runing the following command:
For DoTA:
python3 ./main.py \
--evaluate \
--batch_size 128 \
--dataset DoTA \
--gpu_num 0 \
--height 224 \
--width 224 \
--normal_class 1 \
--eval_every 1000 \
--base_model 'RN50' \
--general \
--fg \
--hf \
--aafm \
--other_method 'TDAFF_BASE' \
--exp_name 'TDAFF_BASE_RN50'
For DADA-2000:
python3 ./main.py \
--evaluate \
--batch_size 128 \
--dataset DADA \
--gpu_num 0 \
--height 224 \
--width 224 \
--normal_class 1 \
--eval_every 1000 \
--base_model 'RN50' \
--general \
--fg \
--hf \
--aafm \
--other_method 'TDAFF_BASE' \
--exp_name 'TDAFF_BASE_RN50'
User can also see "tdaff_base_script.sh" for more training and testing commands.
Note that our project is developed based on the code of Learning Transferable Visual Models From Natural Language Supervision. The relevant pre-trained models can be downloaded from the official website.
If you found the repo is useful, please feel free to cite our papers:
@article{10504300,
title={Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos},
author={Rongqin Liang and Yuanman Li and Jiantao Zhou and Xia Li},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
year={2024},
doi={10.1109/TCSVT.2024.3390173}
}