Skip to content

Commit

Permalink
mistake in manual/computed fixed
Browse files Browse the repository at this point in the history
  • Loading branch information
flying-bear committed May 27, 2019
1 parent 8305821 commit dbd3b75
Show file tree
Hide file tree
Showing 3 changed files with 45 additions and 45 deletions.
84 changes: 42 additions & 42 deletions r/.Rhistory
Original file line number Diff line number Diff line change
@@ -1,45 +1,3 @@
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.05, line = -2.75)
title('correlation matrix', adj = 3, line = -7)
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 3, line = -7)
title('correlation matrix', adj = 0.3, line = -7)
title('correlation matrix', adj = 0.1, line = -7)
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.1, line = -7)
title('correlation matrix', adj = 0.5, line = -7)
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.5, line = -7)
title('correlation matrix', adj = 0.3, line = -7.3)
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.3, line = -8)
title('correlation matrix', adj = 0.3, line = -12)
title('correlation matrix', adj = 0.35, line = -12)
# Insignificant correlation are left blank
res2 <- rcorr(as.matrix(coh_all_measures[3:19]))
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.35, line = -12)
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.325, line = -12)
corrplot(res2$r, type="upper", order="hclust",
p.mat = res2$P, sig.level = 0.01, insig = "blank",
tl.col = "black", tl.cex = 0.75, method="number", number.cex = 0.65)
title('correlation matrix', adj = 0.325, line = -12)
title('correlation matrix')
library(tidyverse)
library(cluster)
library(languageR)
Expand Down Expand Up @@ -510,3 +468,45 @@ coh_ca <- CA(no_nutt_nodiagnosis, graph = FALSE)
coh_ca <- CA(no_nutt_no_diagnosis, graph = FALSE)
fviz_ca_col(coh_ca, col.col = manual, repel=TRUE,
title = 'Principal Correspondence Analysis using factoextra & FactoMineR, biplot of manual and computer measures of coherence')+theme(plot.title = element_text(size = 12))
manual <- as.factor(c('manual measure','manual measure','manual measure','manual measure', 'manual measure','manual measure',
'manual measure','manual measure','manual measure','manual measure','manual measure',
'computed measure','computed measure','computed measure',
'computed measure','computed measure'))
library(tidyverse)
library(cluster)
library(factoextra)
library(languageR)
library(FactoMineR)
library(ggfortify)
coh_all_measures <- read_csv('all_measures.csv')
no_nutt_no_diagnosis <- coh_all_measures[4:18]
row.names(no_nutt_no_diagnosis) <- coh_all_measures[[1]]
row.names(no_nutt_no_diagnosis) <- coh_all_measures[[1]]
no_nutt_no_diagnosis <- coh_all_measures[4:18]
library(tidyverse)
library(cluster)
library(languageR)
library(factoextra)
library(FactoMineR)
library(ggfortify)
coh_all_measures <- read_csv('all_measures.csv')
no_nutt_no_diagnosis <- coh_all_measures[4:18]
no_nutt_no_diagnosis <-
coh_all_measures[4:18]
no_nutt_no_diagnosis <-
coh_all_measures[4:18]
library(tidyverse)
library(cluster)
library(languageR)
library(factoextra)
library(FactoMineR)
library(ggfortify)
coh_all_measures <- read_csv('all_measures.csv')
no_nutt_no_diagnosis <-
coh_all_measures[4:18]
no_nutt_no_diagnosis <- coh_all_measures[4:18]
row.names(no_nutt_no_diagnosis) <- coh_all_measures[[1]]
manual <- as.factor(c('manual measure','manual measure','manual measure','manual measure', 'manual measure','manual measure',
'manual measure','manual measure','manual measure','manual measure','manual measure',
'computed measure','computed measure','computed measure',
'computed measure','computed measure'))
2 changes: 1 addition & 1 deletion r/all_measures.csv
Original file line number Diff line number Diff line change
Expand Up @@ -17,4 +17,4 @@ HP-v15,control,38,0.971428571,0.743421053,0.598684211,0.539473684,0.736842105,0.
HP-v21,control,20,1,1,0.75,0.65,0.95,0.85,0.85,0.15,0,0.2,0.865153429,0.978299308,0.865577951,0.782154305,0.965179138
HP-v22,control,43,0.714285714,0.790697675,0.63372093,0.534883721,0.697674419,0.674418605,0.720930233,0.302325581,0.23255814,0.23255814,0.87528855,0.985079133,0.898549389,0.841654517,0.933273928
HP-v25,control,36,0.857142857,0.875,0.694444445,0.611111111,0.833333333,0.777777778,0.777777778,0.305555556,0.055555556,0.166666667,0.88688507,0.986033342,0.872935609,0.80116834,0.952595994
HP-v27,control,47,1,0.946808511,0.776595745,0.691489362,0.914893617,0.893617021,0.936170213,0,0.063829787,0.042553191,0.871625781,0.985671157,0.857770191,0.773966613,0.947780833
HP-v27,control,47,1,0.946808511,0.776595745,0.691489362,0.914893617,0.893617021,0.936170213,0,0.063829787,0.042553191,0.871625781,0.985671157,0.857770191,0.773966613,0.947780833
4 changes: 2 additions & 2 deletions r/clustering.R
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,10 @@ coh_all_measures <- read_csv('all_measures.csv')
no_nutt_no_diagnosis <- coh_all_measures[4:18]
row.names(no_nutt_no_diagnosis) <- coh_all_measures[[1]]

manual <- as.factor(c('manual measure','manual measure','manual measure','manual measure','manual measure',
manual <- as.factor(c('manual measure','manual measure','manual measure','manual measure', 'manual measure','manual measure',
'manual measure','manual measure','manual measure','manual measure','manual measure',
'computed measure','computed measure','computed measure',
'computed measure','computed measure','computed measure'))
'computed measure','computed measure'))

color_diagnosis <- ifelse(coh_all_measures$diagnosis == 'shizo', 'blue','red')

Expand Down

0 comments on commit dbd3b75

Please sign in to comment.