forked from WZMIAOMIAO/deep-learning-for-image-processing
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a29f20a
commit 4aef891
Showing
4 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
52 changes: 52 additions & 0 deletions
52
pytorch_learning/analyze_weights_featuremap/alexnet_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
import torch.nn as nn | ||
import torch | ||
|
||
|
||
class AlexNet(nn.Module): | ||
def __init__(self, num_classes=1000, init_weights=False): | ||
super(AlexNet, self).__init__() | ||
self.features = nn.Sequential( | ||
nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55] | ||
nn.ReLU(inplace=True), | ||
nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27] | ||
nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27] | ||
nn.ReLU(inplace=True), | ||
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13] | ||
nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13] | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13] | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13] | ||
nn.ReLU(inplace=True), | ||
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6] | ||
) | ||
self.classifier = nn.Sequential( | ||
nn.Dropout(p=0.5), | ||
nn.Linear(128 * 6 * 6, 2048), | ||
nn.ReLU(inplace=True), | ||
nn.Dropout(p=0.5), | ||
nn.Linear(2048, 2048), | ||
nn.ReLU(inplace=True), | ||
nn.Linear(2048, num_classes), | ||
) | ||
if init_weights: | ||
self._initialize_weights() | ||
|
||
def forward(self, x): | ||
outputs = [] | ||
for name, module in self.features.named_children(): | ||
x = module(x) | ||
if name in ["0", "3", "6"]: | ||
outputs.append(x) | ||
|
||
return outputs | ||
|
||
def _initialize_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
if m.bias is not None: | ||
nn.init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
nn.init.normal_(m.weight, 0, 0.01) | ||
nn.init.constant_(m.bias, 0) |
50 changes: 50 additions & 0 deletions
50
pytorch_learning/analyze_weights_featuremap/analyze_feature_map.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import torch | ||
from alexnet_model import AlexNet | ||
from resnet_model import resnet34 | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from PIL import Image | ||
from torchvision import transforms | ||
|
||
data_transform = transforms.Compose( | ||
[transforms.Resize((224, 224)), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | ||
|
||
# data_transform = transforms.Compose( | ||
# [transforms.Resize(256), | ||
# transforms.CenterCrop(224), | ||
# transforms.ToTensor(), | ||
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) | ||
|
||
# create model | ||
model = AlexNet(num_classes=5) | ||
# model = resnet34(num_classes=5) | ||
# load model weights | ||
model_weight_path = "./AlexNet.pth" # "./resNet34.pth" | ||
model.load_state_dict(torch.load(model_weight_path)) | ||
print(model) | ||
|
||
# load image | ||
img = Image.open("../tulip.jpg") | ||
# [N, C, H, W] | ||
img = data_transform(img) | ||
# expand batch dimension | ||
img = torch.unsqueeze(img, dim=0) | ||
|
||
# forward | ||
out_put = model(img) | ||
for feature_map in out_put: | ||
# [N, C, H, W] -> [C, H, W] | ||
im = np.squeeze(feature_map.detach().numpy()) | ||
# [C, H, W] -> [H, W, C] | ||
im = np.transpose(im, [1, 2, 0]) | ||
|
||
# show top 12 feature maps | ||
plt.figure() | ||
for i in range(12): | ||
ax = plt.subplot(3, 4, i+1) | ||
# [H, W, C] | ||
plt.imshow(im[:, :, i], cmap='gray') | ||
plt.show() | ||
|
43 changes: 43 additions & 0 deletions
43
pytorch_learning/analyze_weights_featuremap/analyze_kernel_weight.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import torch | ||
from alexnet_model import AlexNet | ||
from resnet_model import resnet34 | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
|
||
# create model | ||
model = AlexNet(num_classes=5) | ||
# model = resnet34(num_classes=5) | ||
# load model weights | ||
model_weight_path = "./AlexNet.pth" # "resNet34.pth" | ||
model.load_state_dict(torch.load(model_weight_path)) | ||
print(model) | ||
|
||
weights_keys = model.state_dict().keys() | ||
for key in weights_keys: | ||
# remove num_batches_tracked para(in bn) | ||
if "num_batches_tracked" in key: | ||
continue | ||
# [kernel_number, kernel_channel, kernel_height, kernel_width] | ||
weight_t = model.state_dict()[key].numpy() | ||
|
||
# read a kernel information | ||
# k = weight_t[0, :, :, :] | ||
|
||
# calculate mean, std, min, max | ||
weight_mean = weight_t.mean() | ||
weight_std = weight_t.std(ddof=1) | ||
weight_min = weight_t.min() | ||
weight_max = weight_t.max() | ||
print("mean is {}, std is {}, min is {}, max is {}".format(weight_mean, | ||
weight_std, | ||
weight_max, | ||
weight_min)) | ||
|
||
# plot hist image | ||
plt.close() | ||
weight_vec = np.reshape(weight_t, [-1]) | ||
plt.hist(weight_vec, bins=50) | ||
plt.title(key) | ||
plt.show() | ||
|
145 changes: 145 additions & 0 deletions
145
pytorch_learning/analyze_weights_featuremap/resnet_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
import torch.nn as nn | ||
import torch | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, in_channel, out_channel, stride=1, downsample=None): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, | ||
kernel_size=3, stride=stride, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(out_channel) | ||
self.relu = nn.ReLU() | ||
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, | ||
kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(out_channel) | ||
self.downsample = downsample | ||
|
||
def forward(self, x): | ||
identity = x | ||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
out += identity | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, in_channel, out_channel, stride=1, downsample=None): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, | ||
kernel_size=1, stride=1, bias=False) # squeeze channels | ||
self.bn1 = nn.BatchNorm2d(out_channel) | ||
# ----------------------------------------- | ||
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, | ||
kernel_size=3, stride=stride, bias=False, padding=1) | ||
self.bn2 = nn.BatchNorm2d(out_channel) | ||
# ----------------------------------------- | ||
self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion, | ||
kernel_size=1, stride=1, bias=False) # unsqueeze channels | ||
self.bn3 = nn.BatchNorm2d(out_channel*self.expansion) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
|
||
def forward(self, x): | ||
identity = x | ||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
out += identity | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
|
||
def __init__(self, block, blocks_num, num_classes=1000, include_top=True): | ||
super(ResNet, self).__init__() | ||
self.include_top = include_top | ||
self.in_channel = 64 | ||
|
||
self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, | ||
padding=3, bias=False) | ||
self.bn1 = nn.BatchNorm2d(self.in_channel) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1 = self._make_layer(block, 64, blocks_num[0]) | ||
self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) | ||
self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) | ||
self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) | ||
if self.include_top: | ||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) | ||
self.fc = nn.Linear(512 * block.expansion, num_classes) | ||
|
||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
|
||
def _make_layer(self, block, channel, block_num, stride=1): | ||
downsample = None | ||
if stride != 1 or self.in_channel != channel * block.expansion: | ||
downsample = nn.Sequential( | ||
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(channel * block.expansion)) | ||
|
||
layers = [] | ||
layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) | ||
self.in_channel = channel * block.expansion | ||
|
||
for _ in range(1, block_num): | ||
layers.append(block(self.in_channel, channel)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
outputs = [] | ||
x = self.conv1(x) | ||
outputs.append(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
|
||
x = self.layer1(x) | ||
outputs.append(x) | ||
# x = self.layer2(x) | ||
# x = self.layer3(x) | ||
# x = self.layer4(x) | ||
# | ||
# if self.include_top: | ||
# x = self.avgpool(x) | ||
# x = torch.flatten(x, 1) | ||
# x = self.fc(x) | ||
|
||
return outputs | ||
|
||
|
||
def resnet34(num_classes=1000, include_top=True): | ||
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top) | ||
|
||
|
||
def resnet101(num_classes=1000, include_top=True): | ||
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top) |