-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update wrc script. process VG parameters
- Loading branch information
Showing
1 changed file
with
65 additions
and
69 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,82 +1,78 @@ | ||
library(tidyverse) | ||
## This script imports HYPROP processed data. | ||
## Data are read in from Google Drive | ||
## | ||
## This script only collates and processes the Van Genuchten parameters to generate a single csv. | ||
## For QC of all samples, including water retention curves and graphs, see the corresponding QC report (https://github.com/COMPASS-DOE/EXCHANGE/blob/main/Processing_Scripts/soil_wrc_qc_report.Rmd) | ||
## | ||
## Updated: 2025-02-12 | ||
## Kaizad F. Patel | ||
## | ||
|
||
# 1. Setup --------------------------------------------------------------------- | ||
|
||
wrc_filepath = "Data/wrc/Excel_files" | ||
# load packages | ||
require(pacman) | ||
pacman::p_load(tidyverse, # keep things tidy | ||
janitor, # useful for simplifying column names | ||
googlesheets4, # read_sheet | ||
googledrive, # drive_ functions | ||
readxl) | ||
|
||
## Set theme | ||
theme_set(theme_bw()) | ||
|
||
import_data = function(FILEPATH, SHEETNAME){ | ||
## Set GDrive URL for HYPROP data files | ||
directory = "https://drive.google.com/drive/folders/18vcnFCtMJA2CaqwLHKeLEFGKTp90_yQ0" | ||
|
||
# | ||
# 2. Download data ------------------------------------------------------------- | ||
## download and import the Van Genuchten parameters | ||
|
||
import_data = function(directory){ | ||
|
||
# pull a list of file names in the target folder with the target pattern | ||
# then read all files and combine | ||
## a. Create a list of files to download | ||
files <- | ||
drive_ls(directory) %>% | ||
filter(grepl(".xlsx", name)) | ||
|
||
filePaths <- list.files(path = FILEPATH, pattern = ".xlsx", full.names = TRUE) | ||
## b. Download files to local (don't worry, we'll delete em in a sec) | ||
lapply(files$id, drive_download, overwrite = TRUE) | ||
|
||
# dat <- | ||
do.call(bind_rows, lapply(filePaths, function(path){ | ||
# then add a new column `source` to denote the file name | ||
df <- readxl::read_excel(path, sheet = SHEETNAME) | ||
# df <- read.delim(path, skip = 2) | ||
df[["source"]] <- basename(path) | ||
|
||
df = | ||
df %>% | ||
separate(source, into = c("EC", "kit_id", "transect_location"), sep = "_", remove = F) %>% | ||
mutate(transect_location = tolower(transect_location), | ||
transect_location = factor(transect_location, levels = c("upland", "transition", "wetland"))) | ||
df})) | ||
|
||
} | ||
wrc_fitted = import_data(FILEPATH = wrc_filepath, SHEETNAME = "Fitting-Retention Θ(pF)") | ||
wrc_evaluation = import_data(FILEPATH = wrc_filepath, SHEETNAME = "Evaluation-Retention Θ(pF)") | ||
wrc_measurements = import_data(FILEPATH = wrc_filepath, SHEETNAME = 2) | ||
|
||
process_data = function(wrc_fitted, wrc_evaluation){ | ||
wrc_fitted_processed = | ||
wrc_fitted %>% | ||
rename(pF = `pF [-]`, | ||
water_percent_vol = `Water Content [Vol%]`) %>% | ||
#mutate(source = str_remove(source, "[0-9]{6}_")) %>% | ||
#mutate(source = str_remove(source, ".xlsx")) %>% | ||
#separate(source, sep = "_", into = c("campaign", "kit_id", "transect_location")) %>% | ||
force() | ||
## c. pull a list of file names | ||
## then read all files and combine | ||
|
||
wrc_evaluation_procesed = | ||
wrc_evaluation %>% | ||
rename(pF = `pF [-]`, | ||
water_percent_vol = `Water Content [Vol%]`) %>% | ||
#mutate(source = str_remove(source, "[0-9]{6}_")) %>% | ||
#mutate(source = str_remove(source, ".xlsx")) %>% | ||
#separate(source, sep = "_", into = c("campaign", "kit_id", "transect_location")) %>% | ||
force() | ||
filePaths <- files$name | ||
dat = | ||
do.call(bind_rows, lapply(filePaths, function(path){ | ||
# then add a new column `source` to denote the file name | ||
df <- readxl::read_xlsx(path, sheet = "Fitting-Parameter value") | ||
df[["source"]] <- basename(path) | ||
|
||
df | ||
})) | ||
|
||
|
||
wrc_measurements_procesed = | ||
wrc_measurements %>% | ||
rename(datetime = `Date / Time`, | ||
tension_bottom_hPa = `Tension Bottom [hPa]`, | ||
tension_top_hPa = `Tension Top [hPa]`) %>% | ||
#dplyr::select(datetime, starts_with("tension"), source) %>% | ||
mutate(datetime = lubridate::ymd_hms(datetime)) %>% | ||
#mutate(source = str_remove(source, "[0-9]{6}_")) %>% | ||
#mutate(source = str_remove(source, ".xlsx")) %>% | ||
#separate(source, sep = "_", into = c("campaign", "kit_id", "transect_location")) %>% | ||
force() | ||
## d. delete the temporary files | ||
file.remove(c(files$name)) | ||
|
||
## e. output | ||
dat | ||
|
||
} | ||
wrc_parameters = import_data(directory) | ||
|
||
# | ||
# 4. Process data --------------------------------------------------------- | ||
|
||
|
||
wrc_fitted_processed %>% | ||
ggplot(aes(x = pF, y = water_percent_vol, color = transect_location))+ | ||
geom_path()+ | ||
geom_point(data = wrc_evaluation_procesed, size = 0.7)+ | ||
xlim(0, 8)+ | ||
facet_wrap(~kit_id) | ||
|
||
|
||
wrc_measurements_procesed %>% | ||
ggplot(aes(x = datetime))+ | ||
geom_path(aes(y = tension_top_hPa), color = "red")+ | ||
geom_path(aes(y = tension_bottom_hPa), color = "blue")+ | ||
facet_wrap(~kit_id+transect_location, scales = "free_x", ncol = 6)+ | ||
#ylim(0, 810)+ | ||
labs(caption = "red = top, blue = bottom") | ||
wrc_processed = | ||
wrc_parameters %>% | ||
separate(source, into = c("campaign", "kit_id", "transect_location"), sep = "_", remove = F) %>% | ||
mutate(transect_location = str_remove(transect_location, ".xlsx"), | ||
transect_location = tolower(transect_location), | ||
transect_location = factor(transect_location, levels = c("upland", "transition", "wetland"))) %>% | ||
filter(Parameter %in% c("alpha", "n", "th_r", "th_s")) %>% | ||
arrange(kit_id, transect_location) %>% | ||
dplyr::select(campaign, kit_id, transect_location, Parameter, Value) %>% | ||
mutate(Value = str_remove(Value, "\\*"), | ||
Value = as.numeric(Value)) %>% | ||
pivot_wider(names_from = "Parameter", values_from = "Value") |